历史阿拉伯文手写体识别的分布、方向、结构和凹凸特征:比较研究

M. Gagaoua, H. Ghilas, A. Tari, M. Cheriet
{"title":"历史阿拉伯文手写体识别的分布、方向、结构和凹凸特征:比较研究","authors":"M. Gagaoua, H. Ghilas, A. Tari, M. Cheriet","doi":"10.1145/3129186.3129200","DOIUrl":null,"url":null,"abstract":"In the process of automatic handwritten recognition especially in Arabic historical documents, the feature extraction is an important step, which find a set of measured values that accurately discriminate the input handwritten words or characters. In this paper, we try to determine how features designed for Arabic handwritten recognition can be efficient in Arabic historical documents by conducting a comparative study of four types of features (distribution, directional, structural and concavity features). The recognition process is based on Hidden Markov models with HTK toolkit and sliding window features. Words HMMs are learned using embedded training based on character HMM models. Experiments are performed on the benchmark Iben Sina database of Arabic historical documents.","PeriodicalId":405520,"journal":{"name":"Proceedings of the International Conference on Computing for Engineering and Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distribution, Directional, structural and concavity features for historical Arabic handwritten recognition: a comparative study\",\"authors\":\"M. Gagaoua, H. Ghilas, A. Tari, M. Cheriet\",\"doi\":\"10.1145/3129186.3129200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the process of automatic handwritten recognition especially in Arabic historical documents, the feature extraction is an important step, which find a set of measured values that accurately discriminate the input handwritten words or characters. In this paper, we try to determine how features designed for Arabic handwritten recognition can be efficient in Arabic historical documents by conducting a comparative study of four types of features (distribution, directional, structural and concavity features). The recognition process is based on Hidden Markov models with HTK toolkit and sliding window features. Words HMMs are learned using embedded training based on character HMM models. Experiments are performed on the benchmark Iben Sina database of Arabic historical documents.\",\"PeriodicalId\":405520,\"journal\":{\"name\":\"Proceedings of the International Conference on Computing for Engineering and Sciences\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Computing for Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129186.3129200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Computing for Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129186.3129200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在手写体自动识别过程中,尤其是在阿拉伯语历史文献中,特征提取是一个重要的步骤,它找到一组测量值来准确地识别输入的手写体单词或字符。在本文中,我们试图通过对四种类型的特征(分布、方向、结构和凹凸特征)进行比较研究,确定为阿拉伯语手写识别设计的特征如何在阿拉伯语历史文献中有效。识别过程是基于隐马尔可夫模型与HTK工具箱和滑动窗口特征。使用基于字符HMM模型的嵌入式训练来学习单词HMM。在Iben Sina阿拉伯文历史文献基准数据库上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution, Directional, structural and concavity features for historical Arabic handwritten recognition: a comparative study
In the process of automatic handwritten recognition especially in Arabic historical documents, the feature extraction is an important step, which find a set of measured values that accurately discriminate the input handwritten words or characters. In this paper, we try to determine how features designed for Arabic handwritten recognition can be efficient in Arabic historical documents by conducting a comparative study of four types of features (distribution, directional, structural and concavity features). The recognition process is based on Hidden Markov models with HTK toolkit and sliding window features. Words HMMs are learned using embedded training based on character HMM models. Experiments are performed on the benchmark Iben Sina database of Arabic historical documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信