利用指纹照片与深度学习技术来识别个体

{"title":"利用指纹照片与深度学习技术来识别个体","authors":"","doi":"10.56286/ntujet.v2i1.318","DOIUrl":null,"url":null,"abstract":"Biometrics based personal verification for mobile phone devices are currently well-known. In this study, a verification approach is suggested depending on fingerphoto pictures. Couple of Deep Fingerphotos Learning (CDFL) approach is proposed, where two Deep Learning (DL) networks are involved. A fingerphoto picture of the index finger is verified using the first DL network. To recognize a fingerphoto picture of a middle finger, another DL network is used. Then, the outputs of the two networks are integrated. Fingerphoto pictures from the IIITD smartphone fingerphoto dataset are used in this work. The results yield that the accuracy of the first DL network is reported as 76.95% and the accuracy of the second DL network is reported as 86.33%. Whereas, the overall accuracy of the proposed CDFL method after integrating both DL networks is benchmarked as 96.48%.","PeriodicalId":107611,"journal":{"name":"NTU Journal of Engineering and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Fingerphotos with Deep Learning Techniques to Recognize Individuals\",\"authors\":\"\",\"doi\":\"10.56286/ntujet.v2i1.318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometrics based personal verification for mobile phone devices are currently well-known. In this study, a verification approach is suggested depending on fingerphoto pictures. Couple of Deep Fingerphotos Learning (CDFL) approach is proposed, where two Deep Learning (DL) networks are involved. A fingerphoto picture of the index finger is verified using the first DL network. To recognize a fingerphoto picture of a middle finger, another DL network is used. Then, the outputs of the two networks are integrated. Fingerphoto pictures from the IIITD smartphone fingerphoto dataset are used in this work. The results yield that the accuracy of the first DL network is reported as 76.95% and the accuracy of the second DL network is reported as 86.33%. Whereas, the overall accuracy of the proposed CDFL method after integrating both DL networks is benchmarked as 96.48%.\",\"PeriodicalId\":107611,\"journal\":{\"name\":\"NTU Journal of Engineering and Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NTU Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56286/ntujet.v2i1.318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56286/ntujet.v2i1.318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于生物识别技术的移动电话个人验证技术目前已广为人知。本研究提出一种基于指纹照片的验证方法。提出了一种涉及两个深度学习(DL)网络的深度指纹图像学习(CDFL)方法。使用第一个深度学习网络验证了食指的指纹照片。为了识别中指的指纹照片,使用了另一个深度学习网络。然后,将两个网络的输出进行整合。本研究使用来自IIITD智能手机指纹照片数据集的指纹照片。结果表明,第一个深度学习网络的准确率为76.95%,第二个深度学习网络的准确率为86.33%。而综合两种深度学习网络后,所提出的CDFL方法的总体准确率为96.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Fingerphotos with Deep Learning Techniques to Recognize Individuals
Biometrics based personal verification for mobile phone devices are currently well-known. In this study, a verification approach is suggested depending on fingerphoto pictures. Couple of Deep Fingerphotos Learning (CDFL) approach is proposed, where two Deep Learning (DL) networks are involved. A fingerphoto picture of the index finger is verified using the first DL network. To recognize a fingerphoto picture of a middle finger, another DL network is used. Then, the outputs of the two networks are integrated. Fingerphoto pictures from the IIITD smartphone fingerphoto dataset are used in this work. The results yield that the accuracy of the first DL network is reported as 76.95% and the accuracy of the second DL network is reported as 86.33%. Whereas, the overall accuracy of the proposed CDFL method after integrating both DL networks is benchmarked as 96.48%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信