并行最小最大对堆

M. Medidi, N. Deo
{"title":"并行最小最大对堆","authors":"M. Medidi, N. Deo","doi":"10.1109/PCCC.1994.504133","DOIUrl":null,"url":null,"abstract":"Priority deques allow, in addition to the priorityqueue operations of inserting an element and deleting the largest element, the deletion of the smallest element. Data structures like min-max heap, deap, minmax-pair heap, and interval heap, described in the literature, for implementing priority deques achieve only O(1ogn)-parallelism, where n is the number of elements. To alleviate this bottleneck, we present the parallel min-max-pair heap, a new parallel data structure for priority deques, which achieves a pfold parallelism with p processors for all p 5 n. First, we describe how it supports deletion of p largest elements, deletion of p smallest elements, and insertion of p elements in O(log n logp) time using p processors on the exclusive-read exclusive-write (EREW) parallel random-access machine (PRAM). Then, to obtain cost-optimal parallel algorithms, we show that the operations can be pipelined on this structure and that p operations can be handled in O(1ogn) time with p processors.","PeriodicalId":203232,"journal":{"name":"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel Min-max-pair Heap\",\"authors\":\"M. Medidi, N. Deo\",\"doi\":\"10.1109/PCCC.1994.504133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Priority deques allow, in addition to the priorityqueue operations of inserting an element and deleting the largest element, the deletion of the smallest element. Data structures like min-max heap, deap, minmax-pair heap, and interval heap, described in the literature, for implementing priority deques achieve only O(1ogn)-parallelism, where n is the number of elements. To alleviate this bottleneck, we present the parallel min-max-pair heap, a new parallel data structure for priority deques, which achieves a pfold parallelism with p processors for all p 5 n. First, we describe how it supports deletion of p largest elements, deletion of p smallest elements, and insertion of p elements in O(log n logp) time using p processors on the exclusive-read exclusive-write (EREW) parallel random-access machine (PRAM). Then, to obtain cost-optimal parallel algorithms, we show that the operations can be pipelined on this structure and that p operations can be handled in O(1ogn) time with p processors.\",\"PeriodicalId\":203232,\"journal\":{\"name\":\"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCC.1994.504133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCC.1994.504133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

优先级队列除了允许插入元素和删除最大元素的优先级队列操作外,还允许删除最小元素。文献中描述的用于实现优先级队列的数据结构,如最小最大堆、深度堆、最小最大对堆和间隔堆,只能实现O(1ogn)并行性,其中n是元素的数量。为了缓解这一瓶颈,我们提出了并行最小-最大对堆,这是一种新的优先级队列并行数据结构,它实现了p个处理器对所有p5n的pfold并行性。首先,我们描述了它如何支持删除p个最大元素,删除p个最小元素,并在O(log n logp)时间内使用p个处理器在exclusive-read exclusive-write (EREW)并行随机存取机(PRAM)上插入p个元素。然后,为了获得成本最优的并行算法,我们证明了操作可以在这个结构上流水线化,并且p个操作可以在O(1logn)时间内用p个处理器处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Min-max-pair Heap
Priority deques allow, in addition to the priorityqueue operations of inserting an element and deleting the largest element, the deletion of the smallest element. Data structures like min-max heap, deap, minmax-pair heap, and interval heap, described in the literature, for implementing priority deques achieve only O(1ogn)-parallelism, where n is the number of elements. To alleviate this bottleneck, we present the parallel min-max-pair heap, a new parallel data structure for priority deques, which achieves a pfold parallelism with p processors for all p 5 n. First, we describe how it supports deletion of p largest elements, deletion of p smallest elements, and insertion of p elements in O(log n logp) time using p processors on the exclusive-read exclusive-write (EREW) parallel random-access machine (PRAM). Then, to obtain cost-optimal parallel algorithms, we show that the operations can be pipelined on this structure and that p operations can be handled in O(1ogn) time with p processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信