分数阶布朗运动驱动奇异摄动系统的重整化群方法

Lihong Guo, S. Shi, Y. Chen
{"title":"分数阶布朗运动驱动奇异摄动系统的重整化群方法","authors":"Lihong Guo, S. Shi, Y. Chen","doi":"10.1115/detc2019-98258","DOIUrl":null,"url":null,"abstract":"\n In this article, we use the renormalization group method to study the approximate solution of stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H∈12,1. We derive a related reduced system, which we use to construct the separate scale approximation solutions. It is shown that the approximate solutions remain valid with high probability on large time scales. We also expect that our general approach can be applied to the fields of physics, finance, and engineering, etc.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Renormalization Group Method for Singular Perturbed Systems Driven by Fractional Brownian Motion\",\"authors\":\"Lihong Guo, S. Shi, Y. Chen\",\"doi\":\"10.1115/detc2019-98258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this article, we use the renormalization group method to study the approximate solution of stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H∈12,1. We derive a related reduced system, which we use to construct the separate scale approximation solutions. It is shown that the approximate solutions remain valid with high probability on large time scales. We also expect that our general approach can be applied to the fields of physics, finance, and engineering, etc.\",\"PeriodicalId\":166402,\"journal\":{\"name\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用重整化群方法研究了Hurst参数H∈12,1的分数阶布朗运动驱动的随机微分方程(SDEs)的近似解。我们导出了一个相关的简化系统,我们用它来构造单独的尺度近似解。结果表明,近似解在大时间尺度上具有高概率的有效性。我们还期望我们的一般方法可以应用于物理、金融和工程等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renormalization Group Method for Singular Perturbed Systems Driven by Fractional Brownian Motion
In this article, we use the renormalization group method to study the approximate solution of stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H∈12,1. We derive a related reduced system, which we use to construct the separate scale approximation solutions. It is shown that the approximate solutions remain valid with high probability on large time scales. We also expect that our general approach can be applied to the fields of physics, finance, and engineering, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信