基于GP-GPU硬件加速的并行局部波动估计

C. Douglas, Hyoseop Lee, D. Sheen
{"title":"基于GP-GPU硬件加速的并行局部波动估计","authors":"C. Douglas, Hyoseop Lee, D. Sheen","doi":"10.1109/ICISA.2010.5480362","DOIUrl":null,"url":null,"abstract":"We introduce an inverse problem for the local volatility model in option pricing. We solve the problem using the Levenberg-Marquardt algorithm and use the notion of the Frechet derivative when calculating the Jacobian matrix. We analyze the existence of the Frechet derivative and its numerical computation. To reduce the computational time of the inverse problem, a GP-GPU environment is considered for parallel computation. Numerical results confirm the validity and efficiency of the proposed method.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallelized Local Volatility Estimation Using GP-GPU Hardware Acceleration\",\"authors\":\"C. Douglas, Hyoseop Lee, D. Sheen\",\"doi\":\"10.1109/ICISA.2010.5480362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an inverse problem for the local volatility model in option pricing. We solve the problem using the Levenberg-Marquardt algorithm and use the notion of the Frechet derivative when calculating the Jacobian matrix. We analyze the existence of the Frechet derivative and its numerical computation. To reduce the computational time of the inverse problem, a GP-GPU environment is considered for parallel computation. Numerical results confirm the validity and efficiency of the proposed method.\",\"PeriodicalId\":313762,\"journal\":{\"name\":\"2010 International Conference on Information Science and Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Information Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2010.5480362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入了期权定价中局部波动率模型的逆问题。我们使用Levenberg-Marquardt算法来解决这个问题,并在计算雅可比矩阵时使用Frechet导数的概念。分析了Frechet导数的存在性及其数值计算。为了减少反问题的计算时间,考虑在GP-GPU环境下进行并行计算。数值结果验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelized Local Volatility Estimation Using GP-GPU Hardware Acceleration
We introduce an inverse problem for the local volatility model in option pricing. We solve the problem using the Levenberg-Marquardt algorithm and use the notion of the Frechet derivative when calculating the Jacobian matrix. We analyze the existence of the Frechet derivative and its numerical computation. To reduce the computational time of the inverse problem, a GP-GPU environment is considered for parallel computation. Numerical results confirm the validity and efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信