基于主动高效编码的自主学习环收敛控制

Qingpeng Zhu, Chong Zhang, J. Triesch, Bertram E. Shi
{"title":"基于主动高效编码的自主学习环收敛控制","authors":"Qingpeng Zhu, Chong Zhang, J. Triesch, Bertram E. Shi","doi":"10.1109/DEVLRN.2018.8761033","DOIUrl":null,"url":null,"abstract":"A central aspect of the development of visual perception is the autonomous calibration of various kinds of eye movements including saccadic, pursuit, or vergence eye movements. An important but less well-studied class of eye movements are so-called torsional eye movements, where the eyes rotate around the line of sight. In humans, such torsional eye movements obey certain lawful relationships such as Listing's Law. However, it is still an open question how these eye movements develop and what learning processes may contribute to their development. Here we propose a model of the development of torsional eye movements based on the active efficient coding (AEC) framework. AEC models the joint development of sensory encoding and movements of the sense organs to maximize the overall coding efficiency of the perceptual system. Our results demonstrate that optimizing coding efficiency in this way leads to torsional eye movements consistent with Listing's Law describing torsional eye movements in humans. This suggests that humanoid robots aiming to maximize the coding efficiency of their visual systems could also benefit from physical or simulated torsional eye movements.","PeriodicalId":236346,"journal":{"name":"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Autonomous learning of cyclovergence control based on Active Efficient Coding\",\"authors\":\"Qingpeng Zhu, Chong Zhang, J. Triesch, Bertram E. Shi\",\"doi\":\"10.1109/DEVLRN.2018.8761033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central aspect of the development of visual perception is the autonomous calibration of various kinds of eye movements including saccadic, pursuit, or vergence eye movements. An important but less well-studied class of eye movements are so-called torsional eye movements, where the eyes rotate around the line of sight. In humans, such torsional eye movements obey certain lawful relationships such as Listing's Law. However, it is still an open question how these eye movements develop and what learning processes may contribute to their development. Here we propose a model of the development of torsional eye movements based on the active efficient coding (AEC) framework. AEC models the joint development of sensory encoding and movements of the sense organs to maximize the overall coding efficiency of the perceptual system. Our results demonstrate that optimizing coding efficiency in this way leads to torsional eye movements consistent with Listing's Law describing torsional eye movements in humans. This suggests that humanoid robots aiming to maximize the coding efficiency of their visual systems could also benefit from physical or simulated torsional eye movements.\",\"PeriodicalId\":236346,\"journal\":{\"name\":\"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2018.8761033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2018.8761033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

视觉知觉发展的一个核心方面是各种眼球运动的自主校准,包括扫视、追逐或收敛眼运动。一种重要但研究较少的眼球运动是所谓的扭眼运动,即眼睛围绕视线旋转。在人类中,这种扭眼运动遵循一定的法律关系,如列斯汀定律。然而,这些眼球运动是如何发展的,以及哪些学习过程可能有助于它们的发展,这仍然是一个悬而未决的问题。本文提出了一种基于主动有效编码(AEC)框架的扭眼运动发展模型。AEC模拟了感觉编码和感觉器官运动的共同发展,以最大限度地提高感知系统的整体编码效率。我们的研究结果表明,以这种方式优化编码效率会导致与描述人类扭眼运动的Listing’s Law一致的扭眼运动。这表明,旨在最大化其视觉系统编码效率的人形机器人也可以从物理或模拟的扭转眼动中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous learning of cyclovergence control based on Active Efficient Coding
A central aspect of the development of visual perception is the autonomous calibration of various kinds of eye movements including saccadic, pursuit, or vergence eye movements. An important but less well-studied class of eye movements are so-called torsional eye movements, where the eyes rotate around the line of sight. In humans, such torsional eye movements obey certain lawful relationships such as Listing's Law. However, it is still an open question how these eye movements develop and what learning processes may contribute to their development. Here we propose a model of the development of torsional eye movements based on the active efficient coding (AEC) framework. AEC models the joint development of sensory encoding and movements of the sense organs to maximize the overall coding efficiency of the perceptual system. Our results demonstrate that optimizing coding efficiency in this way leads to torsional eye movements consistent with Listing's Law describing torsional eye movements in humans. This suggests that humanoid robots aiming to maximize the coding efficiency of their visual systems could also benefit from physical or simulated torsional eye movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信