扇形波束几何中正反投影的卷积框架

Kai Zhang, A. Entezari
{"title":"扇形波束几何中正反投影的卷积框架","authors":"Kai Zhang, A. Entezari","doi":"10.1109/ISBI.2019.8759285","DOIUrl":null,"url":null,"abstract":"We present a convolutional spline framework for highly efficient and accurate computation of forward model for image reconstruction in fan-beam geometry in X-ray computed tomography. The efficiency of computations makes this framework suitable for large-scale optimization algorithms with on-the-fly, memory-less, computations of the forward and back-projection. Our experiments demonstrate the improvements in accuracy as well as efficiency of our model, specifically for first-order box splines (i.e., pixel-basis) compared to recently developed methods for this purpose, namely Look-up Table-based Ray Integration (LTRI) and Separable Footprints (SF) in 2-D.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convolutional Framework for Forward and Back-Projection in Fan-Beam Geometry\",\"authors\":\"Kai Zhang, A. Entezari\",\"doi\":\"10.1109/ISBI.2019.8759285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a convolutional spline framework for highly efficient and accurate computation of forward model for image reconstruction in fan-beam geometry in X-ray computed tomography. The efficiency of computations makes this framework suitable for large-scale optimization algorithms with on-the-fly, memory-less, computations of the forward and back-projection. Our experiments demonstrate the improvements in accuracy as well as efficiency of our model, specifically for first-order box splines (i.e., pixel-basis) compared to recently developed methods for this purpose, namely Look-up Table-based Ray Integration (LTRI) and Separable Footprints (SF) in 2-D.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"388 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种卷积样条框架,用于高效准确地计算x射线计算机断层扫描中扇形束几何图像重建的正演模型。计算效率使该框架适用于动态、无内存、正向和反向投影计算的大规模优化算法。我们的实验证明了我们的模型在精度和效率方面的改进,特别是对于一阶盒样条(即基于像素的),与最近开发的用于此目的的方法相比,即基于查找表的射线积分(LTRI)和二维可分离足迹(SF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convolutional Framework for Forward and Back-Projection in Fan-Beam Geometry
We present a convolutional spline framework for highly efficient and accurate computation of forward model for image reconstruction in fan-beam geometry in X-ray computed tomography. The efficiency of computations makes this framework suitable for large-scale optimization algorithms with on-the-fly, memory-less, computations of the forward and back-projection. Our experiments demonstrate the improvements in accuracy as well as efficiency of our model, specifically for first-order box splines (i.e., pixel-basis) compared to recently developed methods for this purpose, namely Look-up Table-based Ray Integration (LTRI) and Separable Footprints (SF) in 2-D.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信