数据湖中的表发现:最新技术和未来方向

Grace Fan, Jin Wang, Yuliang Li, Renée J. Miller
{"title":"数据湖中的表发现:最新技术和未来方向","authors":"Grace Fan, Jin Wang, Yuliang Li, Renée J. Miller","doi":"10.1145/3555041.3589409","DOIUrl":null,"url":null,"abstract":"Data discovery refers to a set of tasks that enable users and downstream applications to explore and gain insights from massive collections of data sources such as data lakes. In this tutorial, we will provide a comprehensive overview of the most recent table discovery techniques developed by the data management community. We will cover table understanding tasks such as domain discovery, table annotation, and table representation learning which help data lake systems capture semantics of tables. We will also cover techniques enabling various query-driven discovery and table exploration tasks, as well as how table discovery can support key data science applications such as machine learning and knowledge base construction. Finally, we will discuss future research directions on developing new table discovery paradigms by combining structured knowledge and dense table representations, as well as improving the efficiency of discovery using state-of-the-art indexing techniques, and more.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Table Discovery in Data Lakes: State-of-the-art and Future Directions\",\"authors\":\"Grace Fan, Jin Wang, Yuliang Li, Renée J. Miller\",\"doi\":\"10.1145/3555041.3589409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data discovery refers to a set of tasks that enable users and downstream applications to explore and gain insights from massive collections of data sources such as data lakes. In this tutorial, we will provide a comprehensive overview of the most recent table discovery techniques developed by the data management community. We will cover table understanding tasks such as domain discovery, table annotation, and table representation learning which help data lake systems capture semantics of tables. We will also cover techniques enabling various query-driven discovery and table exploration tasks, as well as how table discovery can support key data science applications such as machine learning and knowledge base construction. Finally, we will discuss future research directions on developing new table discovery paradigms by combining structured knowledge and dense table representations, as well as improving the efficiency of discovery using state-of-the-art indexing techniques, and more.\",\"PeriodicalId\":161812,\"journal\":{\"name\":\"Companion of the 2023 International Conference on Management of Data\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2023 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555041.3589409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据发现指的是一组任务,这些任务使用户和下游应用程序能够探索大量数据源(如数据湖)并从中获得见解。在本教程中,我们将全面概述数据管理社区开发的最新表发现技术。我们将介绍表理解任务,如域发现、表注释和表表示学习,这些任务可以帮助数据湖系统捕获表的语义。我们还将介绍支持各种查询驱动的发现和表探索任务的技术,以及表发现如何支持关键的数据科学应用,如机器学习和知识库构建。最后,我们将讨论未来的研究方向,通过结合结构化知识和密集表表示来开发新的表发现范式,以及使用最先进的索引技术来提高发现效率等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Table Discovery in Data Lakes: State-of-the-art and Future Directions
Data discovery refers to a set of tasks that enable users and downstream applications to explore and gain insights from massive collections of data sources such as data lakes. In this tutorial, we will provide a comprehensive overview of the most recent table discovery techniques developed by the data management community. We will cover table understanding tasks such as domain discovery, table annotation, and table representation learning which help data lake systems capture semantics of tables. We will also cover techniques enabling various query-driven discovery and table exploration tasks, as well as how table discovery can support key data science applications such as machine learning and knowledge base construction. Finally, we will discuss future research directions on developing new table discovery paradigms by combining structured knowledge and dense table representations, as well as improving the efficiency of discovery using state-of-the-art indexing techniques, and more.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信