基于轨迹平滑的轨迹定向分析

P. Tripathi, Madhuri Debnath, R. Elmasri
{"title":"基于轨迹平滑的轨迹定向分析","authors":"P. Tripathi, Madhuri Debnath, R. Elmasri","doi":"10.1145/2830571.2830771","DOIUrl":null,"url":null,"abstract":"In this article we propose a framework to discover interesting directional patterns in trajectory data sets. The proposed framework has five stages; trajectory smoothing, directional segmentation, directional classification, filtering and finally clustering. The main contributions are in the stages for smoothing, directional classification and filtering. Trajectory smoothing is an important step in the analysis of complex, non-smooth trajectories data sets, such as animal movement data. In directional classification stage, different sub-trajectories are assigned to the classes corresponding to their directional orientation. In the filtration stage the outlier trajectories are removed from the respective classes using a novel convex hull based approach. We used animal movement data in this work.","PeriodicalId":170107,"journal":{"name":"Proceedings of the 5th International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional analysis of trajectories based on trajectory smoothing\",\"authors\":\"P. Tripathi, Madhuri Debnath, R. Elmasri\",\"doi\":\"10.1145/2830571.2830771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we propose a framework to discover interesting directional patterns in trajectory data sets. The proposed framework has five stages; trajectory smoothing, directional segmentation, directional classification, filtering and finally clustering. The main contributions are in the stages for smoothing, directional classification and filtering. Trajectory smoothing is an important step in the analysis of complex, non-smooth trajectories data sets, such as animal movement data. In directional classification stage, different sub-trajectories are assigned to the classes corresponding to their directional orientation. In the filtration stage the outlier trajectories are removed from the respective classes using a novel convex hull based approach. We used animal movement data in this work.\",\"PeriodicalId\":170107,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2830571.2830771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2830571.2830771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个框架来发现轨迹数据集中有趣的方向模式。拟议的框架分为五个阶段;轨迹平滑,方向分割,方向分类,滤波,最后聚类。主要贡献在平滑、定向分类和滤波三个阶段。轨迹平滑是分析复杂、非光滑轨迹数据集(如动物运动数据)的重要步骤。在定向分类阶段,将不同的子轨迹分配到与其定向方向相对应的类中。在过滤阶段,使用一种新颖的基于凸包的方法从各自的类中去除离群轨迹。我们在这项工作中使用了动物运动数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directional analysis of trajectories based on trajectory smoothing
In this article we propose a framework to discover interesting directional patterns in trajectory data sets. The proposed framework has five stages; trajectory smoothing, directional segmentation, directional classification, filtering and finally clustering. The main contributions are in the stages for smoothing, directional classification and filtering. Trajectory smoothing is an important step in the analysis of complex, non-smooth trajectories data sets, such as animal movement data. In directional classification stage, different sub-trajectories are assigned to the classes corresponding to their directional orientation. In the filtration stage the outlier trajectories are removed from the respective classes using a novel convex hull based approach. We used animal movement data in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信