{"title":"使用有偏距离测量的无线网络的最大似然定位","authors":"A. Weiss, J. Picard","doi":"10.1109/ISCIT.2007.4392137","DOIUrl":null,"url":null,"abstract":"Localization of ad-hoc wireless networks is useful for services, management and routing. Localization is frequently based on station-to-station range measurements and a few reference sensors. We address the localization problem in the case of incomplete set of noisy range measurements with unknown bias. A statistically efficient, maximum likelihood algorithm, inspired by the Gerchberg-Saxton procedure for phase retrieval, is presented. In addition, a compact explicit expression for the Fisher Information matrix is provided. A set of numerical examples demonstrates the bias effect on the localization accuracy. As expected, the localization accuracy improves when the unknown bias is estimated.","PeriodicalId":331439,"journal":{"name":"2007 International Symposium on Communications and Information Technologies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Maximum Likelihood localization of wireless networks using biased range measurements\",\"authors\":\"A. Weiss, J. Picard\",\"doi\":\"10.1109/ISCIT.2007.4392137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization of ad-hoc wireless networks is useful for services, management and routing. Localization is frequently based on station-to-station range measurements and a few reference sensors. We address the localization problem in the case of incomplete set of noisy range measurements with unknown bias. A statistically efficient, maximum likelihood algorithm, inspired by the Gerchberg-Saxton procedure for phase retrieval, is presented. In addition, a compact explicit expression for the Fisher Information matrix is provided. A set of numerical examples demonstrates the bias effect on the localization accuracy. As expected, the localization accuracy improves when the unknown bias is estimated.\",\"PeriodicalId\":331439,\"journal\":{\"name\":\"2007 International Symposium on Communications and Information Technologies\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Communications and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT.2007.4392137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2007.4392137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum Likelihood localization of wireless networks using biased range measurements
Localization of ad-hoc wireless networks is useful for services, management and routing. Localization is frequently based on station-to-station range measurements and a few reference sensors. We address the localization problem in the case of incomplete set of noisy range measurements with unknown bias. A statistically efficient, maximum likelihood algorithm, inspired by the Gerchberg-Saxton procedure for phase retrieval, is presented. In addition, a compact explicit expression for the Fisher Information matrix is provided. A set of numerical examples demonstrates the bias effect on the localization accuracy. As expected, the localization accuracy improves when the unknown bias is estimated.