面向自动驾驶汽车的高效计算认知传感器系统

Shashanka Marigi Rajanarayana, Sumeet S. Kumar, A. Zjajo, R. V. Leuken
{"title":"面向自动驾驶汽车的高效计算认知传感器系统","authors":"Shashanka Marigi Rajanarayana, Sumeet S. Kumar, A. Zjajo, R. V. Leuken","doi":"10.1109/ICCICC46617.2019.9146070","DOIUrl":null,"url":null,"abstract":"Advanced driving assistance systems (ADAS) prepave regulators, consumers and corporations for the medium-term reality of autonomous driving with adaptive cruise control, collision avoidance and lane departure warning system. Various sensors like camera, RADAR and LIDAR, integrated into the vehicle assist driving. In addition, deep learning approaches are utilized in a wide range of applications ranging from object detection and scene segmentation to engine fault diagnosis and emission management to detect vehicle network intrusion. In this paper, we scope out the state of the art sensors subsystems in terms of its functionality, characteristics, specifications and communication protocol, and we describe cognitive deep learning based algorithms required for environment perception through these sensors. Subsequently, we analyze the cognitive algorithm by profiling the standard deep learning models, explore different compute platforms and possible algorithm and hardware optimization scenarios.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Computationally-Efficient Cognitive Sensor Systems for Autonomous Vehicles\",\"authors\":\"Shashanka Marigi Rajanarayana, Sumeet S. Kumar, A. Zjajo, R. V. Leuken\",\"doi\":\"10.1109/ICCICC46617.2019.9146070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced driving assistance systems (ADAS) prepave regulators, consumers and corporations for the medium-term reality of autonomous driving with adaptive cruise control, collision avoidance and lane departure warning system. Various sensors like camera, RADAR and LIDAR, integrated into the vehicle assist driving. In addition, deep learning approaches are utilized in a wide range of applications ranging from object detection and scene segmentation to engine fault diagnosis and emission management to detect vehicle network intrusion. In this paper, we scope out the state of the art sensors subsystems in terms of its functionality, characteristics, specifications and communication protocol, and we describe cognitive deep learning based algorithms required for environment perception through these sensors. Subsequently, we analyze the cognitive algorithm by profiling the standard deep learning models, explore different compute platforms and possible algorithm and hardware optimization scenarios.\",\"PeriodicalId\":294902,\"journal\":{\"name\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICC46617.2019.9146070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先进的驾驶辅助系统(ADAS)使监管者、消费者和企业为中期自动驾驶做好准备,该系统具有自适应巡航控制、防撞和车道偏离警告系统。各种传感器,如摄像头,雷达和激光雷达,集成到车辆辅助驾驶。此外,深度学习方法被广泛应用于从目标检测和场景分割到发动机故障诊断和排放管理到检测车辆网络入侵等领域。在本文中,我们从功能、特征、规格和通信协议等方面概述了目前最先进的传感器子系统,并描述了通过这些传感器进行环境感知所需的基于认知深度学习的算法。随后,我们通过分析标准深度学习模型来分析认知算法,探索不同的计算平台以及可能的算法和硬件优化场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Computationally-Efficient Cognitive Sensor Systems for Autonomous Vehicles
Advanced driving assistance systems (ADAS) prepave regulators, consumers and corporations for the medium-term reality of autonomous driving with adaptive cruise control, collision avoidance and lane departure warning system. Various sensors like camera, RADAR and LIDAR, integrated into the vehicle assist driving. In addition, deep learning approaches are utilized in a wide range of applications ranging from object detection and scene segmentation to engine fault diagnosis and emission management to detect vehicle network intrusion. In this paper, we scope out the state of the art sensors subsystems in terms of its functionality, characteristics, specifications and communication protocol, and we describe cognitive deep learning based algorithms required for environment perception through these sensors. Subsequently, we analyze the cognitive algorithm by profiling the standard deep learning models, explore different compute platforms and possible algorithm and hardware optimization scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信