Risk-RRT *:一种人-机器人共存环境下的机器人运动规划算法

Wenzheng Chi, M. Meng
{"title":"Risk-RRT *:一种人-机器人共存环境下的机器人运动规划算法","authors":"Wenzheng Chi, M. Meng","doi":"10.1109/ICAR.2017.8023670","DOIUrl":null,"url":null,"abstract":"In the human robot coexisting environment, to reach the goal efficiently and safely is very meaningful for the mobile service robot. In this paper, a Risk based Rapidly-exploring Random Tree for optimal motion planning (Risk-RRT∗) algorithm is proposed by combining the comfort and collision risk (CCR) map with the RRT∗ algorithm, which provides a variant of the RRT∗ algorithm in the dynamic human robot coexisting environment. In the experiments, the time cost in the navigation process and the length of the trajectory are utilized for the evaluation of the proposed algorithm. A comparison with the Risk-RRT algorithm is carried out and experimental results reveal that our proposed algorithm can achieve a better performance than that of the Risk-RRT in both static and dynamic environments.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Risk-RRT∗: A robot motion planning algorithm for the human robot coexisting environment\",\"authors\":\"Wenzheng Chi, M. Meng\",\"doi\":\"10.1109/ICAR.2017.8023670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the human robot coexisting environment, to reach the goal efficiently and safely is very meaningful for the mobile service robot. In this paper, a Risk based Rapidly-exploring Random Tree for optimal motion planning (Risk-RRT∗) algorithm is proposed by combining the comfort and collision risk (CCR) map with the RRT∗ algorithm, which provides a variant of the RRT∗ algorithm in the dynamic human robot coexisting environment. In the experiments, the time cost in the navigation process and the length of the trajectory are utilized for the evaluation of the proposed algorithm. A comparison with the Risk-RRT algorithm is carried out and experimental results reveal that our proposed algorithm can achieve a better performance than that of the Risk-RRT in both static and dynamic environments.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在人-机器人共存的环境下,如何高效、安全地达到目标,对于移动服务机器人来说是非常有意义的。本文将舒适与碰撞风险(CCR)映射与RRT∗算法相结合,提出了一种基于风险的快速探索随机树最优运动规划(Risk-RRT∗)算法,提供了动态人机共存环境下RRT∗算法的一种变体。在实验中,利用导航过程的时间成本和轨迹长度对算法进行了评价。与Risk-RRT算法进行了比较,实验结果表明,本文提出的算法在静态和动态环境下都能取得比Risk-RRT算法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk-RRT∗: A robot motion planning algorithm for the human robot coexisting environment
In the human robot coexisting environment, to reach the goal efficiently and safely is very meaningful for the mobile service robot. In this paper, a Risk based Rapidly-exploring Random Tree for optimal motion planning (Risk-RRT∗) algorithm is proposed by combining the comfort and collision risk (CCR) map with the RRT∗ algorithm, which provides a variant of the RRT∗ algorithm in the dynamic human robot coexisting environment. In the experiments, the time cost in the navigation process and the length of the trajectory are utilized for the evaluation of the proposed algorithm. A comparison with the Risk-RRT algorithm is carried out and experimental results reveal that our proposed algorithm can achieve a better performance than that of the Risk-RRT in both static and dynamic environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信