新闻视频中音频信息的特征提取与分类

Yu Song, Wenhong Wang, Fengjuan Guo
{"title":"新闻视频中音频信息的特征提取与分类","authors":"Yu Song, Wenhong Wang, Fengjuan Guo","doi":"10.1109/ICWAPR.2009.5207452","DOIUrl":null,"url":null,"abstract":"Feature extraction and analysis are the foundation of audio classification. At first, audio features are analyzed deeply, including short-time energy, zero-crossing rate, bandwidth, low short-time energy ratio, high zero-crossing rate ratio, and noise rate. Secondly a new audio classification method for news video is proposed based on the decision tree method, and then divides audio information into four classes: silence, pure speech, music, non-pure speech. The experiment results show that the selected features are effective for audio classification in news video, and the classification accuracy is reasonable.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Feature extraction and classification for audio information in news video\",\"authors\":\"Yu Song, Wenhong Wang, Fengjuan Guo\",\"doi\":\"10.1109/ICWAPR.2009.5207452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction and analysis are the foundation of audio classification. At first, audio features are analyzed deeply, including short-time energy, zero-crossing rate, bandwidth, low short-time energy ratio, high zero-crossing rate ratio, and noise rate. Secondly a new audio classification method for news video is proposed based on the decision tree method, and then divides audio information into four classes: silence, pure speech, music, non-pure speech. The experiment results show that the selected features are effective for audio classification in news video, and the classification accuracy is reasonable.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

特征提取和分析是音频分类的基础。首先,对音频特征进行了深入分析,包括短时能量、过零率、带宽、短时能量比低、过零率比高、噪声率等。其次,提出了一种新的基于决策树方法的新闻视频音频分类方法,并将音频信息分为无声、纯语音、音乐、非纯语音四类。实验结果表明,所选特征对新闻视频中的音频分类是有效的,分类精度合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction and classification for audio information in news video
Feature extraction and analysis are the foundation of audio classification. At first, audio features are analyzed deeply, including short-time energy, zero-crossing rate, bandwidth, low short-time energy ratio, high zero-crossing rate ratio, and noise rate. Secondly a new audio classification method for news video is proposed based on the decision tree method, and then divides audio information into four classes: silence, pure speech, music, non-pure speech. The experiment results show that the selected features are effective for audio classification in news video, and the classification accuracy is reasonable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信