一种多项式分解算法

David R. Barton, R. Zippel
{"title":"一种多项式分解算法","authors":"David R. Barton, R. Zippel","doi":"10.1145/800205.806356","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient, effective algorithm for decomposing a polynomial <italic>f(x)</italic> into an irreducible representation of the form <italic>f(x) &equil; g<subscrpt>1</subscrpt>(g<subscrpt>2</subscrpt>( ... g<subscrpt>n</subscrpt>(x) ... ))</italic>. This decomposition is used as an aid in solving high degree metacyclic equations in radicals and preconditioning polynomials for evaluation.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A polynomial decomposition algorithm\",\"authors\":\"David R. Barton, R. Zippel\",\"doi\":\"10.1145/800205.806356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient, effective algorithm for decomposing a polynomial <italic>f(x)</italic> into an irreducible representation of the form <italic>f(x) &equil; g<subscrpt>1</subscrpt>(g<subscrpt>2</subscrpt>( ... g<subscrpt>n</subscrpt>(x) ... ))</italic>. This decomposition is used as an aid in solving high degree metacyclic equations in radicals and preconditioning polynomials for evaluation.\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"364 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800205.806356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800205.806356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文提出了一种高效的算法,将多项式f(x)分解为f(x) &equil的不可约表示形式;g1 (g2(…Gn (x)…). 这种分解被用作解高次元循环方程的辅助根和预条件的评估多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A polynomial decomposition algorithm
This paper presents an efficient, effective algorithm for decomposing a polynomial f(x) into an irreducible representation of the form f(x) &equil; g1(g2( ... gn(x) ... )). This decomposition is used as an aid in solving high degree metacyclic equations in radicals and preconditioning polynomials for evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信