生物医学植入物无线电力传输链路线圈错位补偿概念

Fanpeng Kong, Yi Huang, L. Najafizadeh
{"title":"生物医学植入物无线电力传输链路线圈错位补偿概念","authors":"Fanpeng Kong, Yi Huang, L. Najafizadeh","doi":"10.1109/WPT.2015.7140152","DOIUrl":null,"url":null,"abstract":"Inductively coupled wireless links are attractive solutions for wireless powering of biomedical implants. One of the issues that negatively impacts the performance of wireless power transfer (WPT) links in implants, is the misalignment between the primary and secondary coils, which could naturally occur as a result of body movement or changes in the biological environment. An immediate effect of coil misalignment is the reduction in the power delivered to the load. In this paper, we present a design concept that could be implemented on the transmitter side, to mitigate this effect while keeping the driver to work at its optimum operating condition. Specifically, we will demonstrate, analytically and through simulations, that tuning the shunt capacitor and the supply voltage at the transmitter side could be a promising approach for compensating the performance degradation induced by coil misalignment in WPT links.","PeriodicalId":194427,"journal":{"name":"2015 IEEE Wireless Power Transfer Conference (WPTC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A coil misalignment compensation concept for wireless power transfer links in biomedical implants\",\"authors\":\"Fanpeng Kong, Yi Huang, L. Najafizadeh\",\"doi\":\"10.1109/WPT.2015.7140152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inductively coupled wireless links are attractive solutions for wireless powering of biomedical implants. One of the issues that negatively impacts the performance of wireless power transfer (WPT) links in implants, is the misalignment between the primary and secondary coils, which could naturally occur as a result of body movement or changes in the biological environment. An immediate effect of coil misalignment is the reduction in the power delivered to the load. In this paper, we present a design concept that could be implemented on the transmitter side, to mitigate this effect while keeping the driver to work at its optimum operating condition. Specifically, we will demonstrate, analytically and through simulations, that tuning the shunt capacitor and the supply voltage at the transmitter side could be a promising approach for compensating the performance degradation induced by coil misalignment in WPT links.\",\"PeriodicalId\":194427,\"journal\":{\"name\":\"2015 IEEE Wireless Power Transfer Conference (WPTC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Wireless Power Transfer Conference (WPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPT.2015.7140152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPT.2015.7140152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

电感耦合无线链路是生物医学植入物无线供电的有吸引力的解决方案。影响植入物无线电力传输(WPT)链路性能的问题之一是初级线圈和次级线圈之间的不对准,这可能是由于身体运动或生物环境变化而自然发生的。线圈不对准的直接影响是传递给负载的功率减少。在本文中,我们提出了一种可以在发送端实现的设计概念,以减轻这种影响,同时保持驱动器在最佳操作条件下工作。具体来说,我们将通过分析和模拟来证明,调整发射机侧的并联电容器和电源电压可能是补偿WPT链路中线圈错位引起的性能下降的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A coil misalignment compensation concept for wireless power transfer links in biomedical implants
Inductively coupled wireless links are attractive solutions for wireless powering of biomedical implants. One of the issues that negatively impacts the performance of wireless power transfer (WPT) links in implants, is the misalignment between the primary and secondary coils, which could naturally occur as a result of body movement or changes in the biological environment. An immediate effect of coil misalignment is the reduction in the power delivered to the load. In this paper, we present a design concept that could be implemented on the transmitter side, to mitigate this effect while keeping the driver to work at its optimum operating condition. Specifically, we will demonstrate, analytically and through simulations, that tuning the shunt capacitor and the supply voltage at the transmitter side could be a promising approach for compensating the performance degradation induced by coil misalignment in WPT links.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信