选择性神经元分裂增强qnn的故障恢复能力

Mohammad Hasan Ahmadilivani, Mahdi Taheri, J. Raik, M. Daneshtalab, M. Jenihhin
{"title":"选择性神经元分裂增强qnn的故障恢复能力","authors":"Mohammad Hasan Ahmadilivani, Mahdi Taheri, J. Raik, M. Daneshtalab, M. Jenihhin","doi":"10.1109/AICAS57966.2023.10168633","DOIUrl":null,"url":null,"abstract":"The superior performance of Deep Neural Networks (DNNs) has led to their application in various aspects of human life. Safety-critical applications are no exception and impose rigorous reliability requirements on DNNs. Quantized Neural Networks (QNNs) have emerged to tackle the complexity of DNN accelerators, however, they are more prone to reliability issues.In this paper, a recent analytical resilience assessment method is adapted for QNNs to identify critical neurons based on a Neuron Vulnerability Factor (NVF). Thereafter, a novel method for splitting the critical neurons is proposed that enables the design of a Lightweight Correction Unit (LCU) in the accelerator without redesigning its computational part.The method is validated by experiments on different QNNs and datasets. The results demonstrate that the proposed method for correcting the faults has a twice smaller overhead than a selective Triple Modular Redundancy (TMR) while achieving a similar level of fault resiliency.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Fault Resilience of QNNs by Selective Neuron Splitting\",\"authors\":\"Mohammad Hasan Ahmadilivani, Mahdi Taheri, J. Raik, M. Daneshtalab, M. Jenihhin\",\"doi\":\"10.1109/AICAS57966.2023.10168633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The superior performance of Deep Neural Networks (DNNs) has led to their application in various aspects of human life. Safety-critical applications are no exception and impose rigorous reliability requirements on DNNs. Quantized Neural Networks (QNNs) have emerged to tackle the complexity of DNN accelerators, however, they are more prone to reliability issues.In this paper, a recent analytical resilience assessment method is adapted for QNNs to identify critical neurons based on a Neuron Vulnerability Factor (NVF). Thereafter, a novel method for splitting the critical neurons is proposed that enables the design of a Lightweight Correction Unit (LCU) in the accelerator without redesigning its computational part.The method is validated by experiments on different QNNs and datasets. The results demonstrate that the proposed method for correcting the faults has a twice smaller overhead than a selective Triple Modular Redundancy (TMR) while achieving a similar level of fault resiliency.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络(dnn)的优越性能使其在人类生活的各个方面得到了应用。安全关键型应用也不例外,对dnn提出了严格的可靠性要求。量化神经网络(QNNs)的出现是为了解决深度神经网络加速器的复杂性,然而,它们更容易出现可靠性问题。本文提出了一种新的基于神经元脆弱性因子(NVF)的分析弹性评估方法,用于qnn识别关键神经元。在此基础上,提出了一种分离关键神经元的新方法,使加速器中的轻量级校正单元(LCU)的设计无需重新设计其计算部分。在不同的qnn和数据集上进行了实验验证。结果表明,所提出的纠错方法的开销比选择性三模冗余(TMR)方法小两倍,同时达到相似的故障恢复水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Fault Resilience of QNNs by Selective Neuron Splitting
The superior performance of Deep Neural Networks (DNNs) has led to their application in various aspects of human life. Safety-critical applications are no exception and impose rigorous reliability requirements on DNNs. Quantized Neural Networks (QNNs) have emerged to tackle the complexity of DNN accelerators, however, they are more prone to reliability issues.In this paper, a recent analytical resilience assessment method is adapted for QNNs to identify critical neurons based on a Neuron Vulnerability Factor (NVF). Thereafter, a novel method for splitting the critical neurons is proposed that enables the design of a Lightweight Correction Unit (LCU) in the accelerator without redesigning its computational part.The method is validated by experiments on different QNNs and datasets. The results demonstrate that the proposed method for correcting the faults has a twice smaller overhead than a selective Triple Modular Redundancy (TMR) while achieving a similar level of fault resiliency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信