改进濒危语言文献的ASR输出

Robert Jimerson, Kruthika Simha, R. Ptucha, Emily Tucker Prud'hommeaux
{"title":"改进濒危语言文献的ASR输出","authors":"Robert Jimerson, Kruthika Simha, R. Ptucha, Emily Tucker Prud'hommeaux","doi":"10.21437/SLTU.2018-39","DOIUrl":null,"url":null,"abstract":"Documenting endangered languages supports the historical preservation of diverse cultures. Automatic speech recognition (ASR), while potentially very useful for this task, has been underutilized for language documentation due to the challenges inherent in building robust models from extremely limited audio and text training resources. In this paper, we explore the utility of supplementing existing training resources using synthetic data, with a focus on Seneca, a morphologically complex endangered language of North America. We use transfer learning to train acoustic models using both the small amount of available acoustic training data and artificially distorted copies of that data. We then supplement the language model training data with verb forms generated by rule and sentences produced by an LSTM trained on the available text data. The addition of synthetic data yields reductions in word error rate, demonstrating the promise of data augmentation for this task.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Improving ASR Output for Endangered Language Documentation\",\"authors\":\"Robert Jimerson, Kruthika Simha, R. Ptucha, Emily Tucker Prud'hommeaux\",\"doi\":\"10.21437/SLTU.2018-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Documenting endangered languages supports the historical preservation of diverse cultures. Automatic speech recognition (ASR), while potentially very useful for this task, has been underutilized for language documentation due to the challenges inherent in building robust models from extremely limited audio and text training resources. In this paper, we explore the utility of supplementing existing training resources using synthetic data, with a focus on Seneca, a morphologically complex endangered language of North America. We use transfer learning to train acoustic models using both the small amount of available acoustic training data and artificially distorted copies of that data. We then supplement the language model training data with verb forms generated by rule and sentences produced by an LSTM trained on the available text data. The addition of synthetic data yields reductions in word error rate, demonstrating the promise of data augmentation for this task.\",\"PeriodicalId\":190269,\"journal\":{\"name\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SLTU.2018-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving ASR Output for Endangered Language Documentation
Documenting endangered languages supports the historical preservation of diverse cultures. Automatic speech recognition (ASR), while potentially very useful for this task, has been underutilized for language documentation due to the challenges inherent in building robust models from extremely limited audio and text training resources. In this paper, we explore the utility of supplementing existing training resources using synthetic data, with a focus on Seneca, a morphologically complex endangered language of North America. We use transfer learning to train acoustic models using both the small amount of available acoustic training data and artificially distorted copies of that data. We then supplement the language model training data with verb forms generated by rule and sentences produced by an LSTM trained on the available text data. The addition of synthetic data yields reductions in word error rate, demonstrating the promise of data augmentation for this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信