Z. Ren, Jiaoyang Li, Han Zhang, Sven Koenig, S. Rathinam, H. Choset
{"title":"基于二元分支多目标冲突的多智能体寻径算法","authors":"Z. Ren, Jiaoyang Li, Han Zhang, Sven Koenig, S. Rathinam, H. Choset","doi":"10.1609/icaps.v33i1.27214","DOIUrl":null,"url":null,"abstract":"This paper considers a multi-agent multi-objective path-finding problem that requires not only finding collision-free paths for multiple agents from their respective start locations to their respective goal locations but also optimizing multiple objectives simultaneously. In general, there is no single solution that optimizes all the objectives simultaneously, and the problem is thus to find the so-called Pareto-optimal frontier. To solve this problem, an algorithm called Multi-Objective Conflict-Based Search (MO-CBS) was recently developed and is guaranteed to find the exact Pareto-optimal frontier. However, MO-CBS does not scale well with the number of agents due to the large branching factor of the search, which leads to a lot of duplicated effort in agent-agent collision resolution. This paper therefore develops a new algorithm called Binary Branching MO-CBS (BB-MO-CBS) that reduces the branching factor as well as the duplicated collision resolution during the search, which expedites the search as a result. Our experimental results show that BB-MO-CBS reduces the number of conflicts by up to two orders of magnitude and often doubles or triples the success rates of MO-CBS on various maps given a runtime limit.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Binary Branching Multi-Objective Conflict-Based Search for Multi-Agent Path Finding\",\"authors\":\"Z. Ren, Jiaoyang Li, Han Zhang, Sven Koenig, S. Rathinam, H. Choset\",\"doi\":\"10.1609/icaps.v33i1.27214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a multi-agent multi-objective path-finding problem that requires not only finding collision-free paths for multiple agents from their respective start locations to their respective goal locations but also optimizing multiple objectives simultaneously. In general, there is no single solution that optimizes all the objectives simultaneously, and the problem is thus to find the so-called Pareto-optimal frontier. To solve this problem, an algorithm called Multi-Objective Conflict-Based Search (MO-CBS) was recently developed and is guaranteed to find the exact Pareto-optimal frontier. However, MO-CBS does not scale well with the number of agents due to the large branching factor of the search, which leads to a lot of duplicated effort in agent-agent collision resolution. This paper therefore develops a new algorithm called Binary Branching MO-CBS (BB-MO-CBS) that reduces the branching factor as well as the duplicated collision resolution during the search, which expedites the search as a result. Our experimental results show that BB-MO-CBS reduces the number of conflicts by up to two orders of magnitude and often doubles or triples the success rates of MO-CBS on various maps given a runtime limit.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Binary Branching Multi-Objective Conflict-Based Search for Multi-Agent Path Finding
This paper considers a multi-agent multi-objective path-finding problem that requires not only finding collision-free paths for multiple agents from their respective start locations to their respective goal locations but also optimizing multiple objectives simultaneously. In general, there is no single solution that optimizes all the objectives simultaneously, and the problem is thus to find the so-called Pareto-optimal frontier. To solve this problem, an algorithm called Multi-Objective Conflict-Based Search (MO-CBS) was recently developed and is guaranteed to find the exact Pareto-optimal frontier. However, MO-CBS does not scale well with the number of agents due to the large branching factor of the search, which leads to a lot of duplicated effort in agent-agent collision resolution. This paper therefore develops a new algorithm called Binary Branching MO-CBS (BB-MO-CBS) that reduces the branching factor as well as the duplicated collision resolution during the search, which expedites the search as a result. Our experimental results show that BB-MO-CBS reduces the number of conflicts by up to two orders of magnitude and often doubles or triples the success rates of MO-CBS on various maps given a runtime limit.