{"title":"滤波OFDM:未来无线系统的新波形","authors":"Mohammad Javad Abdoli, Ming Jia, Jianglei Ma","doi":"10.1109/SPAWC.2015.7227001","DOIUrl":null,"url":null,"abstract":"A spectrally-localized waveform is proposed based on filtered orthogonal frequency division multiplexing (f-OFDM). By allowing the filter length to exceed the cyclic prefix (CP) length of OFDM and designing the filter appropriately, the proposed f-OFDM waveform can achieve a desirable frequency localization for bandwidths as narrow as a few tens of subcarriers, while keeping the inter-symbol interference/inter-carrier interference (ISI/ICI) within an acceptable limit. Enabled by the proposed f-OFDM, an asynchronous filtered orthogonal frequency division multiple access (f-OFDMA)/filtered discrete-Fourier transform-spread OFDMA (f-DFT-S-OFDMA) scheme is introduced, which uses the spectrum shaping filter at each transmitter for side lobe leakage elimination and a bank of filters at the receiver for inter-user interference rejection. Per-user downsampling and short fast Fourier transform (FFT) are used at the receiver to ensure a reasonable complexity of implementation. The proposed scheme removes the inter-user time-synchronization overhead required in the synchronous OFDMA/DFT-S-OFDMA. The performance of the asynchronous f-OFDMA is evaluated and compared with that of the universal-filtered OFDM (UF-OFDM), proposed in [1], [2].","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"312","resultStr":"{\"title\":\"Filtered OFDM: A new waveform for future wireless systems\",\"authors\":\"Mohammad Javad Abdoli, Ming Jia, Jianglei Ma\",\"doi\":\"10.1109/SPAWC.2015.7227001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spectrally-localized waveform is proposed based on filtered orthogonal frequency division multiplexing (f-OFDM). By allowing the filter length to exceed the cyclic prefix (CP) length of OFDM and designing the filter appropriately, the proposed f-OFDM waveform can achieve a desirable frequency localization for bandwidths as narrow as a few tens of subcarriers, while keeping the inter-symbol interference/inter-carrier interference (ISI/ICI) within an acceptable limit. Enabled by the proposed f-OFDM, an asynchronous filtered orthogonal frequency division multiple access (f-OFDMA)/filtered discrete-Fourier transform-spread OFDMA (f-DFT-S-OFDMA) scheme is introduced, which uses the spectrum shaping filter at each transmitter for side lobe leakage elimination and a bank of filters at the receiver for inter-user interference rejection. Per-user downsampling and short fast Fourier transform (FFT) are used at the receiver to ensure a reasonable complexity of implementation. The proposed scheme removes the inter-user time-synchronization overhead required in the synchronous OFDMA/DFT-S-OFDMA. The performance of the asynchronous f-OFDMA is evaluated and compared with that of the universal-filtered OFDM (UF-OFDM), proposed in [1], [2].\",\"PeriodicalId\":211324,\"journal\":{\"name\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"312\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2015.7227001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Filtered OFDM: A new waveform for future wireless systems
A spectrally-localized waveform is proposed based on filtered orthogonal frequency division multiplexing (f-OFDM). By allowing the filter length to exceed the cyclic prefix (CP) length of OFDM and designing the filter appropriately, the proposed f-OFDM waveform can achieve a desirable frequency localization for bandwidths as narrow as a few tens of subcarriers, while keeping the inter-symbol interference/inter-carrier interference (ISI/ICI) within an acceptable limit. Enabled by the proposed f-OFDM, an asynchronous filtered orthogonal frequency division multiple access (f-OFDMA)/filtered discrete-Fourier transform-spread OFDMA (f-DFT-S-OFDMA) scheme is introduced, which uses the spectrum shaping filter at each transmitter for side lobe leakage elimination and a bank of filters at the receiver for inter-user interference rejection. Per-user downsampling and short fast Fourier transform (FFT) are used at the receiver to ensure a reasonable complexity of implementation. The proposed scheme removes the inter-user time-synchronization overhead required in the synchronous OFDMA/DFT-S-OFDMA. The performance of the asynchronous f-OFDMA is evaluated and compared with that of the universal-filtered OFDM (UF-OFDM), proposed in [1], [2].