群体中细粒度异常行为理解的新数据集

H. Rabiee, J. Haddadnia, Hossein Mousavi, M. Kalantarzadeh, Moin Nabi, Vittorio Murino
{"title":"群体中细粒度异常行为理解的新数据集","authors":"H. Rabiee, J. Haddadnia, Hossein Mousavi, M. Kalantarzadeh, Moin Nabi, Vittorio Murino","doi":"10.1109/AVSS.2016.7738074","DOIUrl":null,"url":null,"abstract":"Despite the huge research on crowd on behavior understanding in visual surveillance community, lack of publicly available realistic datasets for evaluating crowd behavioral interaction led not to have a fair common test bed for researchers to compare the strength of their methods in the real scenarios. This work presents a novel crowd dataset contains around 45,000 video clips which annotated by one of the five different fine-grained abnormal behavior categories. We also evaluated two state-of-the-art methods on our dataset, showing that our dataset can be effectively used as a benchmark for fine-grained abnormality detection. The details of the dataset and the results of the baseline methods are presented in the paper.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Novel dataset for fine-grained abnormal behavior understanding in crowd\",\"authors\":\"H. Rabiee, J. Haddadnia, Hossein Mousavi, M. Kalantarzadeh, Moin Nabi, Vittorio Murino\",\"doi\":\"10.1109/AVSS.2016.7738074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the huge research on crowd on behavior understanding in visual surveillance community, lack of publicly available realistic datasets for evaluating crowd behavioral interaction led not to have a fair common test bed for researchers to compare the strength of their methods in the real scenarios. This work presents a novel crowd dataset contains around 45,000 video clips which annotated by one of the five different fine-grained abnormal behavior categories. We also evaluated two state-of-the-art methods on our dataset, showing that our dataset can be effectively used as a benchmark for fine-grained abnormality detection. The details of the dataset and the results of the baseline methods are presented in the paper.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

尽管在视觉监控领域对人群的行为理解进行了大量的研究,但缺乏公开可用的真实数据集来评估人群的行为互动,导致研究人员没有一个公平的通用测试平台来比较他们的方法在真实场景中的强度。这项工作提出了一个新的人群数据集,其中包含大约45,000个视频片段,这些视频片段由五种不同的细粒度异常行为类别之一进行注释。我们还在我们的数据集上评估了两种最先进的方法,表明我们的数据集可以有效地用作细粒度异常检测的基准。本文介绍了数据集的详细信息和基线方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel dataset for fine-grained abnormal behavior understanding in crowd
Despite the huge research on crowd on behavior understanding in visual surveillance community, lack of publicly available realistic datasets for evaluating crowd behavioral interaction led not to have a fair common test bed for researchers to compare the strength of their methods in the real scenarios. This work presents a novel crowd dataset contains around 45,000 video clips which annotated by one of the five different fine-grained abnormal behavior categories. We also evaluated two state-of-the-art methods on our dataset, showing that our dataset can be effectively used as a benchmark for fine-grained abnormality detection. The details of the dataset and the results of the baseline methods are presented in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信