模型融合:弹性自动驾驶车辆转向控制的加权n -版本规划

Ailec Wu, A. Rubaiyat, Chris Anton, H. Alemzadeh
{"title":"模型融合:弹性自动驾驶车辆转向控制的加权n -版本规划","authors":"Ailec Wu, A. Rubaiyat, Chris Anton, H. Alemzadeh","doi":"10.1109/ISSREW.2018.00-11","DOIUrl":null,"url":null,"abstract":"We present the preliminary results on developing a weighted N-version programming (NVP) scheme for ensuring resilience of machine learning based steering control algorithms. The proposed scheme is designed based on the fusion of outputs from three redundant Deep Neural Network (DNN) models, independently designed using Udacity's self driving car challenge data. The improvement in reliability compared to single DNN models is evaluated by measuring the steering angle prediction accuracy in the presence of simulated perturbations on input image data caused by various environmental conditions.","PeriodicalId":321448,"journal":{"name":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Model Fusion: Weighted N-Version Programming for Resilient Autonomous Vehicle Steering Control\",\"authors\":\"Ailec Wu, A. Rubaiyat, Chris Anton, H. Alemzadeh\",\"doi\":\"10.1109/ISSREW.2018.00-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the preliminary results on developing a weighted N-version programming (NVP) scheme for ensuring resilience of machine learning based steering control algorithms. The proposed scheme is designed based on the fusion of outputs from three redundant Deep Neural Network (DNN) models, independently designed using Udacity's self driving car challenge data. The improvement in reliability compared to single DNN models is evaluated by measuring the steering angle prediction accuracy in the presence of simulated perturbations on input image data caused by various environmental conditions.\",\"PeriodicalId\":321448,\"journal\":{\"name\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2018.00-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2018.00-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了开发加权n版本编程(NVP)方案的初步结果,以确保基于机器学习的转向控制算法的弹性。该方案基于三个冗余深度神经网络(DNN)模型的输出融合而设计,该模型使用Udacity的自动驾驶汽车挑战数据独立设计。与单一深度神经网络模型相比,可靠性的提高是通过测量在各种环境条件引起的输入图像数据的模拟扰动存在下的转向角预测精度来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Fusion: Weighted N-Version Programming for Resilient Autonomous Vehicle Steering Control
We present the preliminary results on developing a weighted N-version programming (NVP) scheme for ensuring resilience of machine learning based steering control algorithms. The proposed scheme is designed based on the fusion of outputs from three redundant Deep Neural Network (DNN) models, independently designed using Udacity's self driving car challenge data. The improvement in reliability compared to single DNN models is evaluated by measuring the steering angle prediction accuracy in the presence of simulated perturbations on input image data caused by various environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信