He Zhang, G. Klein, M. Staples, June Andronick, Liming Zhu, Rafal Kolanski
{"title":"仿真建模的大规模形式化验证过程","authors":"He Zhang, G. Klein, M. Staples, June Andronick, Liming Zhu, Rafal Kolanski","doi":"10.1109/ICSSP.2012.6225979","DOIUrl":null,"url":null,"abstract":"The L4.verified project successfully completed a large-scale machine-checked formal verification at the code level of the functional correctness of the seL4 operating system microkernel. The project applied a middle-out process, which is significantly different from conventional software development processes. This paper reports a simulation model of this process; it is the first simulation model of a formal verification process. The model aims to support further understanding and investigation of the dynamic characteristics of the process and to support planning and optimization of future process enactment. We based the simulation model on a descriptive process model and information from project logs, meeting notes, and version control data over the project's history. Simulation results from the initial version of the model show the impact of complex coupling among the activities and artifacts, and frequent parallel as well as iterative work during execution. We examine some possible improvements on the formal verification process in light of the simulation results.","PeriodicalId":166836,"journal":{"name":"2012 International Conference on Software and System Process (ICSSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Simulation modeling of a large-scale formal verification process\",\"authors\":\"He Zhang, G. Klein, M. Staples, June Andronick, Liming Zhu, Rafal Kolanski\",\"doi\":\"10.1109/ICSSP.2012.6225979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The L4.verified project successfully completed a large-scale machine-checked formal verification at the code level of the functional correctness of the seL4 operating system microkernel. The project applied a middle-out process, which is significantly different from conventional software development processes. This paper reports a simulation model of this process; it is the first simulation model of a formal verification process. The model aims to support further understanding and investigation of the dynamic characteristics of the process and to support planning and optimization of future process enactment. We based the simulation model on a descriptive process model and information from project logs, meeting notes, and version control data over the project's history. Simulation results from the initial version of the model show the impact of complex coupling among the activities and artifacts, and frequent parallel as well as iterative work during execution. We examine some possible improvements on the formal verification process in light of the simulation results.\",\"PeriodicalId\":166836,\"journal\":{\"name\":\"2012 International Conference on Software and System Process (ICSSP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Software and System Process (ICSSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSP.2012.6225979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Software and System Process (ICSSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSP.2012.6225979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation modeling of a large-scale formal verification process
The L4.verified project successfully completed a large-scale machine-checked formal verification at the code level of the functional correctness of the seL4 operating system microkernel. The project applied a middle-out process, which is significantly different from conventional software development processes. This paper reports a simulation model of this process; it is the first simulation model of a formal verification process. The model aims to support further understanding and investigation of the dynamic characteristics of the process and to support planning and optimization of future process enactment. We based the simulation model on a descriptive process model and information from project logs, meeting notes, and version control data over the project's history. Simulation results from the initial version of the model show the impact of complex coupling among the activities and artifacts, and frequent parallel as well as iterative work during execution. We examine some possible improvements on the formal verification process in light of the simulation results.