基于贝叶斯压缩感知的稀疏近场聚焦天线阵列合成

Z. Huang, Y. Cheng
{"title":"基于贝叶斯压缩感知的稀疏近场聚焦天线阵列合成","authors":"Z. Huang, Y. Cheng","doi":"10.1109/COMPEM.2018.8496569","DOIUrl":null,"url":null,"abstract":"A mathematical model for near-field sparse array antennas synthesis is established in this work for the first time. An algorithm based on the multi-task compressive sensing method is employed to obtain the element position and excitation coefficient fitting a desired near-field radiation pattern. Numerical results validate the effectiveness of the proposed method to synthesize different types of desired patterns with more than 30% of elements saved compared with uniformly spaced array.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Sparse Near-Field Focusing Antenna Arrays Based on Bayesian Compressive Sensing\",\"authors\":\"Z. Huang, Y. Cheng\",\"doi\":\"10.1109/COMPEM.2018.8496569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model for near-field sparse array antennas synthesis is established in this work for the first time. An algorithm based on the multi-task compressive sensing method is employed to obtain the element position and excitation coefficient fitting a desired near-field radiation pattern. Numerical results validate the effectiveness of the proposed method to synthesize different types of desired patterns with more than 30% of elements saved compared with uniformly spaced array.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首次建立了近场稀疏阵列天线综合的数学模型。采用一种基于多任务压缩感知的算法来获得拟合所需近场辐射图的单元位置和激励系数。数值结果验证了该方法合成不同类型期望图案的有效性,与均匀间隔阵列相比节省了30%以上的单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Sparse Near-Field Focusing Antenna Arrays Based on Bayesian Compressive Sensing
A mathematical model for near-field sparse array antennas synthesis is established in this work for the first time. An algorithm based on the multi-task compressive sensing method is employed to obtain the element position and excitation coefficient fitting a desired near-field radiation pattern. Numerical results validate the effectiveness of the proposed method to synthesize different types of desired patterns with more than 30% of elements saved compared with uniformly spaced array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信