一种基于铁电场效应晶体管的多精度神经网络内存结构

T. Soliman, R. Olivo, T. Kirchner, M. Lederer, T. Kämpfe, A. Guntoro, N. Wehn
{"title":"一种基于铁电场效应晶体管的多精度神经网络内存结构","authors":"T. Soliman, R. Olivo, T. Kirchner, M. Lederer, T. Kämpfe, A. Guntoro, N. Wehn","doi":"10.1109/socc49529.2020.9524750","DOIUrl":null,"url":null,"abstract":"Computing-in-memory (CIM) is a promising approach to improve the throughput and the energy efficiency of deep neural network (DNN) processors. So far, resistive nonvolatile memories have been adapted to build crossbar-based accelerators for DNN inference. However, such structures suffer from several drawbacks such as sneak paths, large ADCs/DACs, high write energy, etc. In this paper we present a mixed signal in-memory hardware accelerator for CNNs. We propose an in-memory inference system that uses FeFETs as the main nonvolatile memory cell. We show how the proposed crossbar unit cell can overcome the aforementioned issues while reducing unit cell size and power consumption. The proposed system decomposes multi-bit operands down to single bit operations. We then re-combine them without any loss of precision using accumulators and shifters within the crossbar and across different crossbars. Simulations demonstrate that we can outperform state-of-the-art efficiencies with 3.28 TOPS/W and can pack 1.64 TOPS in an area of 1.52mm2using 22 nm FDSOI technology,","PeriodicalId":114740,"journal":{"name":"2020 IEEE 33rd International System-on-Chip Conference (SOCC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Ferroelectric FET Based In-memory Architecture for Multi-Precision Neural Networks\",\"authors\":\"T. Soliman, R. Olivo, T. Kirchner, M. Lederer, T. Kämpfe, A. Guntoro, N. Wehn\",\"doi\":\"10.1109/socc49529.2020.9524750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing-in-memory (CIM) is a promising approach to improve the throughput and the energy efficiency of deep neural network (DNN) processors. So far, resistive nonvolatile memories have been adapted to build crossbar-based accelerators for DNN inference. However, such structures suffer from several drawbacks such as sneak paths, large ADCs/DACs, high write energy, etc. In this paper we present a mixed signal in-memory hardware accelerator for CNNs. We propose an in-memory inference system that uses FeFETs as the main nonvolatile memory cell. We show how the proposed crossbar unit cell can overcome the aforementioned issues while reducing unit cell size and power consumption. The proposed system decomposes multi-bit operands down to single bit operations. We then re-combine them without any loss of precision using accumulators and shifters within the crossbar and across different crossbars. Simulations demonstrate that we can outperform state-of-the-art efficiencies with 3.28 TOPS/W and can pack 1.64 TOPS in an area of 1.52mm2using 22 nm FDSOI technology,\",\"PeriodicalId\":114740,\"journal\":{\"name\":\"2020 IEEE 33rd International System-on-Chip Conference (SOCC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/socc49529.2020.9524750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/socc49529.2020.9524750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

内存计算(CIM)是提高深度神经网络(DNN)处理器吞吐量和能量效率的一种很有前途的方法。到目前为止,电阻性非易失性存储器已被用于构建基于交叉棒的DNN推理加速器。然而,这种结构存在一些缺点,如潜行路径、大adc / dac、高写入能量等。本文提出了一种用于cnn的混合信号内存硬件加速器。我们提出了一种以场效应管作为主要非易失性存储单元的内存推理系统。我们展示了所提出的交叉棒单元电池如何克服上述问题,同时减少了单元电池的尺寸和功耗。该系统将多比特操作数分解为单比特操作数。然后,我们使用累加器和移位器在横杆内和不同横杆之间重新组合它们,而不损失任何精度。模拟演示,我们可以比最先进的效率1.64 3.28上衣/ W和可以包顶在一个面积1.52 mm2using 22纳米FDSOI技术,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Ferroelectric FET Based In-memory Architecture for Multi-Precision Neural Networks
Computing-in-memory (CIM) is a promising approach to improve the throughput and the energy efficiency of deep neural network (DNN) processors. So far, resistive nonvolatile memories have been adapted to build crossbar-based accelerators for DNN inference. However, such structures suffer from several drawbacks such as sneak paths, large ADCs/DACs, high write energy, etc. In this paper we present a mixed signal in-memory hardware accelerator for CNNs. We propose an in-memory inference system that uses FeFETs as the main nonvolatile memory cell. We show how the proposed crossbar unit cell can overcome the aforementioned issues while reducing unit cell size and power consumption. The proposed system decomposes multi-bit operands down to single bit operations. We then re-combine them without any loss of precision using accumulators and shifters within the crossbar and across different crossbars. Simulations demonstrate that we can outperform state-of-the-art efficiencies with 3.28 TOPS/W and can pack 1.64 TOPS in an area of 1.52mm2using 22 nm FDSOI technology,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信