rhs -聚砜膜对腐植酸脱除操作条件的优化

M. R. Jamalludin, S. Hubadillah, Z. Harun, M. Z. Yunos, H. Basri, N. Hairom
{"title":"rhs -聚砜膜对腐植酸脱除操作条件的优化","authors":"M. R. Jamalludin, S. Hubadillah, Z. Harun, M. Z. Yunos, H. Basri, N. Hairom","doi":"10.30880/emait.2021.02.01.002","DOIUrl":null,"url":null,"abstract":"This study investigates the effects of rice husk silica (RHS) as additive in the polysulfone membrane to enhance antifouling properties in membrane separation process. The performance (of what?) was evaluated in term of pure water flux (PWF), rejection and antifouling properties. The optimized of normalized flux (Jf /Jo) at different parameter in filtration (pH, ionic strength and tranmembrane-pressure) was carried out by using the response surface methodology (RSM). The results showed that the addition of 4 wt. % RHS give the highest flux at 300.50 L/m².hour (LMH). The highest rejection was found at 3 wt. % of RHS membrane with value 98% for UV254 and 96% for TOC. The optimal value of Jf/Jo was found at 0.62 with the condition of pH: 6.10, ionic strength: 0.05 mol/L and transmembrane-pressure: 2.67 bars. Optimize of RSM analysis from ANOVA also proved that the error of model is less than 0.05% which indicates that the model is significant.","PeriodicalId":357370,"journal":{"name":"Emerging Advances in Integrated Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Optimization of RHS-polysulfone Membrane towards Operating Condition for Humic Acid Removal\",\"authors\":\"M. R. Jamalludin, S. Hubadillah, Z. Harun, M. Z. Yunos, H. Basri, N. Hairom\",\"doi\":\"10.30880/emait.2021.02.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effects of rice husk silica (RHS) as additive in the polysulfone membrane to enhance antifouling properties in membrane separation process. The performance (of what?) was evaluated in term of pure water flux (PWF), rejection and antifouling properties. The optimized of normalized flux (Jf /Jo) at different parameter in filtration (pH, ionic strength and tranmembrane-pressure) was carried out by using the response surface methodology (RSM). The results showed that the addition of 4 wt. % RHS give the highest flux at 300.50 L/m².hour (LMH). The highest rejection was found at 3 wt. % of RHS membrane with value 98% for UV254 and 96% for TOC. The optimal value of Jf/Jo was found at 0.62 with the condition of pH: 6.10, ionic strength: 0.05 mol/L and transmembrane-pressure: 2.67 bars. Optimize of RSM analysis from ANOVA also proved that the error of model is less than 0.05% which indicates that the model is significant.\",\"PeriodicalId\":357370,\"journal\":{\"name\":\"Emerging Advances in Integrated Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Advances in Integrated Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/emait.2021.02.01.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Advances in Integrated Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/emait.2021.02.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了稻壳二氧化硅(RHS)作为聚砜膜的添加剂对膜分离过程中防污性能的影响。从纯水通量(PWF)、截留性能和防污性能方面对(什么?)进行了评价。采用响应面法(RSM)对不同过滤参数(pH、离子强度和跨膜压力)下归一化通量(Jf /Jo)进行了优化。结果表明,添加4 wt. % RHS时,通量最高,为300.50 L/m²。小时(LMH)。截留率最高的RHS膜为3wt . %, UV254截留率为98%,TOC截留率为96%。在pH为6.10、离子强度为0.05 mol/L、跨膜压力为2.67 bar的条件下,Jf/Jo的最佳值为0.62。方差分析的RSM优化也证明了模型的误差小于0.05%,表明模型是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Optimization of RHS-polysulfone Membrane towards Operating Condition for Humic Acid Removal
This study investigates the effects of rice husk silica (RHS) as additive in the polysulfone membrane to enhance antifouling properties in membrane separation process. The performance (of what?) was evaluated in term of pure water flux (PWF), rejection and antifouling properties. The optimized of normalized flux (Jf /Jo) at different parameter in filtration (pH, ionic strength and tranmembrane-pressure) was carried out by using the response surface methodology (RSM). The results showed that the addition of 4 wt. % RHS give the highest flux at 300.50 L/m².hour (LMH). The highest rejection was found at 3 wt. % of RHS membrane with value 98% for UV254 and 96% for TOC. The optimal value of Jf/Jo was found at 0.62 with the condition of pH: 6.10, ionic strength: 0.05 mol/L and transmembrane-pressure: 2.67 bars. Optimize of RSM analysis from ANOVA also proved that the error of model is less than 0.05% which indicates that the model is significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信