{"title":"基于轮廓形状的特征提取用于乳房x线图像的肿瘤分析","authors":"Atef Boujelben, A. Chaabani, Hedi Tmar, M. Abid","doi":"10.1109/DICTA.2009.71","DOIUrl":null,"url":null,"abstract":"The cancer treatment is effective only if it is detected at an early stage. In this context, Mammography is the most efficient method for early detection. Due to the complexity of this last, the distinction of microcalcifications or opacities is very difficult. This paper deals with the problem of shape feature extraction in digital mammograms, particularly the boundary information. In fact, we evaluated the efficiency on boundary information possessed by mass region. We propose feature vector based in boundary analysis in ameliorating three points of view like RDM, convexity and angular features. We use the Digital Database for Screening Mammography “DDSM” for experiments. Some classifiers as Multilayer Perception “MLP” and k-Nearest Neighbours “kNN” are used to distinguish the pathological records from the healthy ones. Using “MLP” classifiers we obtained 94,2% as sensitivity (percentage of pathological ROIs correctly classified). The results in term of specificity (percentage of non-pathological ROIs correctly classified) grows around 97,9% using MLP classifier.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Feature Extraction from Contours Shape for Tumor Analyzing in Mammographic Images\",\"authors\":\"Atef Boujelben, A. Chaabani, Hedi Tmar, M. Abid\",\"doi\":\"10.1109/DICTA.2009.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cancer treatment is effective only if it is detected at an early stage. In this context, Mammography is the most efficient method for early detection. Due to the complexity of this last, the distinction of microcalcifications or opacities is very difficult. This paper deals with the problem of shape feature extraction in digital mammograms, particularly the boundary information. In fact, we evaluated the efficiency on boundary information possessed by mass region. We propose feature vector based in boundary analysis in ameliorating three points of view like RDM, convexity and angular features. We use the Digital Database for Screening Mammography “DDSM” for experiments. Some classifiers as Multilayer Perception “MLP” and k-Nearest Neighbours “kNN” are used to distinguish the pathological records from the healthy ones. Using “MLP” classifiers we obtained 94,2% as sensitivity (percentage of pathological ROIs correctly classified). The results in term of specificity (percentage of non-pathological ROIs correctly classified) grows around 97,9% using MLP classifier.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Extraction from Contours Shape for Tumor Analyzing in Mammographic Images
The cancer treatment is effective only if it is detected at an early stage. In this context, Mammography is the most efficient method for early detection. Due to the complexity of this last, the distinction of microcalcifications or opacities is very difficult. This paper deals with the problem of shape feature extraction in digital mammograms, particularly the boundary information. In fact, we evaluated the efficiency on boundary information possessed by mass region. We propose feature vector based in boundary analysis in ameliorating three points of view like RDM, convexity and angular features. We use the Digital Database for Screening Mammography “DDSM” for experiments. Some classifiers as Multilayer Perception “MLP” and k-Nearest Neighbours “kNN” are used to distinguish the pathological records from the healthy ones. Using “MLP” classifiers we obtained 94,2% as sensitivity (percentage of pathological ROIs correctly classified). The results in term of specificity (percentage of non-pathological ROIs correctly classified) grows around 97,9% using MLP classifier.