高性能数据库系统中多连接扩展聚合数据立方体查询的并行处理

D. Taniar, Rebecca Boon-Noi Tan
{"title":"高性能数据库系统中多连接扩展聚合数据立方体查询的并行处理","authors":"D. Taniar, Rebecca Boon-Noi Tan","doi":"10.1109/ISPAN.2002.1004260","DOIUrl":null,"url":null,"abstract":"Data-cube queries containing aggregate functions often combine multiple tables through join operations. We can extend this to \"multi-join expansion-aggregate\" data-cube queries by using more than one aggregate function in a \"SELECT\" statement in conjunction with relational operators. In parallel processing for such queries, it must be decided which attribute to use as a partitioning attribute, in particular the join attribute or \"cube-by\". Based on the partitioning attribute, we introduce three parallel multi-join expansion-aggregate data-cube query methods, namely the multi-join partition method (MPM), the expansion partition method (EPM) and the \"early expansion partition with replication\" method (EPRM). All three methods use the join attribute and \"cube-by\" as the partitioning attribute. A performance evaluation of the three parallel processing methods is also carried out and presented.","PeriodicalId":255069,"journal":{"name":"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel processing of multi-join expansion-aggregate data cube query in high performance database systems\",\"authors\":\"D. Taniar, Rebecca Boon-Noi Tan\",\"doi\":\"10.1109/ISPAN.2002.1004260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-cube queries containing aggregate functions often combine multiple tables through join operations. We can extend this to \\\"multi-join expansion-aggregate\\\" data-cube queries by using more than one aggregate function in a \\\"SELECT\\\" statement in conjunction with relational operators. In parallel processing for such queries, it must be decided which attribute to use as a partitioning attribute, in particular the join attribute or \\\"cube-by\\\". Based on the partitioning attribute, we introduce three parallel multi-join expansion-aggregate data-cube query methods, namely the multi-join partition method (MPM), the expansion partition method (EPM) and the \\\"early expansion partition with replication\\\" method (EPRM). All three methods use the join attribute and \\\"cube-by\\\" as the partitioning attribute. A performance evaluation of the three parallel processing methods is also carried out and presented.\",\"PeriodicalId\":255069,\"journal\":{\"name\":\"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2002.1004260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2002.1004260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

包含聚合函数的数据多维数据集查询通常通过连接操作组合多个表。通过在“SELECT”语句中使用多个聚合函数并结合关系操作符,我们可以将其扩展到“多连接扩展-聚合”数据多维数据集查询。在对此类查询进行并行处理时,必须决定使用哪个属性作为分区属性,特别是join属性或“cube-by”。基于分区属性,介绍了三种并行的多连接扩展聚合数据立方体查询方法,即多连接分区法(MPM)、扩展分区法(EPM)和“带复制的早期扩展分区法”(EPRM)。这三种方法都使用join属性和“cube-by”作为分区属性。对三种并行处理方法进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel processing of multi-join expansion-aggregate data cube query in high performance database systems
Data-cube queries containing aggregate functions often combine multiple tables through join operations. We can extend this to "multi-join expansion-aggregate" data-cube queries by using more than one aggregate function in a "SELECT" statement in conjunction with relational operators. In parallel processing for such queries, it must be decided which attribute to use as a partitioning attribute, in particular the join attribute or "cube-by". Based on the partitioning attribute, we introduce three parallel multi-join expansion-aggregate data-cube query methods, namely the multi-join partition method (MPM), the expansion partition method (EPM) and the "early expansion partition with replication" method (EPRM). All three methods use the join attribute and "cube-by" as the partitioning attribute. A performance evaluation of the three parallel processing methods is also carried out and presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信