互动教学,以自然语言学习情绪

Rajesh Titung, Cecilia Ovesdotter Alm
{"title":"互动教学,以自然语言学习情绪","authors":"Rajesh Titung, Cecilia Ovesdotter Alm","doi":"10.18653/v1/2022.hcinlp-1.6","DOIUrl":null,"url":null,"abstract":"Motivated by prior literature, we provide a proof of concept simulation study for an understudied interactive machine learning method, machine teaching (MT), for the text-based emotion prediction task. We compare this method experimentally against a more well-studied technique, active learning (AL). Results show the strengths of both approaches over more resource-intensive offline supervised learning. Additionally, applying AL and MT to fine-tune a pre-trained model offers further efficiency gain. We end by recommending research directions which aim to empower users in the learning process.","PeriodicalId":447138,"journal":{"name":"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing","volume":"8 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Teaching Interactively to Learn Emotions in Natural Language\",\"authors\":\"Rajesh Titung, Cecilia Ovesdotter Alm\",\"doi\":\"10.18653/v1/2022.hcinlp-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by prior literature, we provide a proof of concept simulation study for an understudied interactive machine learning method, machine teaching (MT), for the text-based emotion prediction task. We compare this method experimentally against a more well-studied technique, active learning (AL). Results show the strengths of both approaches over more resource-intensive offline supervised learning. Additionally, applying AL and MT to fine-tune a pre-trained model offers further efficiency gain. We end by recommending research directions which aim to empower users in the learning process.\",\"PeriodicalId\":447138,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing\",\"volume\":\"8 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.hcinlp-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.hcinlp-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

受先前文献的启发,我们对一种尚未得到充分研究的交互式机器学习方法——机器教学(MT)进行了概念验证仿真研究,用于基于文本的情感预测任务。我们通过实验将这种方法与一种研究更充分的技术——主动学习(AL)进行比较。结果表明,这两种方法都优于资源密集的离线监督学习。此外,应用人工智能和机器学习对预训练模型进行微调可以进一步提高效率。最后,我们推荐了一些研究方向,目的是在学习过程中增强用户的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teaching Interactively to Learn Emotions in Natural Language
Motivated by prior literature, we provide a proof of concept simulation study for an understudied interactive machine learning method, machine teaching (MT), for the text-based emotion prediction task. We compare this method experimentally against a more well-studied technique, active learning (AL). Results show the strengths of both approaches over more resource-intensive offline supervised learning. Additionally, applying AL and MT to fine-tune a pre-trained model offers further efficiency gain. We end by recommending research directions which aim to empower users in the learning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信