Volodymyr Valko, S. Stirenko, Ihor Babarykin, Yuri G. Gordienko
{"title":"医疗保健领域深度学习内容的来源检测系统","authors":"Volodymyr Valko, S. Stirenko, Ihor Babarykin, Yuri G. Gordienko","doi":"10.1109/EUROCON52738.2021.9535621","DOIUrl":null,"url":null,"abstract":"In this article we provide a general framework using Ethereum smart contracts to track back the provenance and evolution of deep learning content (DLC) to its original source even if the DLC was edited (e.g. DL models were retrained or/and datasets were updated) by anonymous authors. The main principle behind the solution is that if the DLC can be credibly traced to a trusted or reputable source, the DLC can then be real and authentic. The solution is proposed in the healthcare context and for medical DLC, especially for federated machine learning, but it can be applied to any other form of DLC.","PeriodicalId":328338,"journal":{"name":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provenance Detection System for Deep Learning Content in Healthcare\",\"authors\":\"Volodymyr Valko, S. Stirenko, Ihor Babarykin, Yuri G. Gordienko\",\"doi\":\"10.1109/EUROCON52738.2021.9535621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we provide a general framework using Ethereum smart contracts to track back the provenance and evolution of deep learning content (DLC) to its original source even if the DLC was edited (e.g. DL models were retrained or/and datasets were updated) by anonymous authors. The main principle behind the solution is that if the DLC can be credibly traced to a trusted or reputable source, the DLC can then be real and authentic. The solution is proposed in the healthcare context and for medical DLC, especially for federated machine learning, but it can be applied to any other form of DLC.\",\"PeriodicalId\":328338,\"journal\":{\"name\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON52738.2021.9535621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON52738.2021.9535621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Provenance Detection System for Deep Learning Content in Healthcare
In this article we provide a general framework using Ethereum smart contracts to track back the provenance and evolution of deep learning content (DLC) to its original source even if the DLC was edited (e.g. DL models were retrained or/and datasets were updated) by anonymous authors. The main principle behind the solution is that if the DLC can be credibly traced to a trusted or reputable source, the DLC can then be real and authentic. The solution is proposed in the healthcare context and for medical DLC, especially for federated machine learning, but it can be applied to any other form of DLC.