Yi Sun, G. Moss, Maria Prapopoulou, R. Adams, Marc B. Brown, N. Davey
{"title":"使用机器学习方法预测皮肤穿透","authors":"Yi Sun, G. Moss, Maria Prapopoulou, R. Adams, Marc B. Brown, N. Davey","doi":"10.1109/ICDM.2008.97","DOIUrl":null,"url":null,"abstract":"Improving predictions of the skin permeability coefficient is a difficult problem. It is also an important issue with the increasing use of skin patches as a means of drug delivery. In this work, we apply K-nearest-neighbour regression, single layer networks, mixture of experts and Gaussian processes to predict the permeability coefficient. We obtain a considerable improvement over the quantitative structure-activity relationship (QSARs) predictors. We show that using five features, which are molecular weight, solubility parameter, lipophilicity, the number of hydrogen bonding acceptor and donor groups, can produce better predictions than the one using only lipophilicity and the molecular weight. The Gaussian process regression with five compound features gives the best performance in this work.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Prediction of Skin Penetration Using Machine Learning Methods\",\"authors\":\"Yi Sun, G. Moss, Maria Prapopoulou, R. Adams, Marc B. Brown, N. Davey\",\"doi\":\"10.1109/ICDM.2008.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving predictions of the skin permeability coefficient is a difficult problem. It is also an important issue with the increasing use of skin patches as a means of drug delivery. In this work, we apply K-nearest-neighbour regression, single layer networks, mixture of experts and Gaussian processes to predict the permeability coefficient. We obtain a considerable improvement over the quantitative structure-activity relationship (QSARs) predictors. We show that using five features, which are molecular weight, solubility parameter, lipophilicity, the number of hydrogen bonding acceptor and donor groups, can produce better predictions than the one using only lipophilicity and the molecular weight. The Gaussian process regression with five compound features gives the best performance in this work.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Skin Penetration Using Machine Learning Methods
Improving predictions of the skin permeability coefficient is a difficult problem. It is also an important issue with the increasing use of skin patches as a means of drug delivery. In this work, we apply K-nearest-neighbour regression, single layer networks, mixture of experts and Gaussian processes to predict the permeability coefficient. We obtain a considerable improvement over the quantitative structure-activity relationship (QSARs) predictors. We show that using five features, which are molecular weight, solubility parameter, lipophilicity, the number of hydrogen bonding acceptor and donor groups, can produce better predictions than the one using only lipophilicity and the molecular weight. The Gaussian process regression with five compound features gives the best performance in this work.