{"title":"基于纳米孔的光学超级透镜","authors":"Yongqi Fu, C. Du, Wei Zhou, L. Lim","doi":"10.1155/2008/148505","DOIUrl":null,"url":null,"abstract":"A type of nanopinhole-based plasmonic structure is presented. It can realize superfocusing within micron-scale propagation distance with spatial resolution beyond diffraction limit. Cut-off wavelength effect is highlighted for understanding how periodicity distribution of the nanopinholes influences transmission and focusing through the structure. Redshift peak transmission occurs while the periodicity increases. In addition, focusing property of the plasmonic structures is analyzed for the monochromatic illumination with different incident wavelengths ranging from 400 nm to 750 nm. The easy fabrication and high focusing performance of the proposed structures may be used in data storage devices, bioimaging, and nanolithography.","PeriodicalId":341677,"journal":{"name":"Research Letters in Physics","volume":"39 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Nanopinholes-Based Optical Superlens\",\"authors\":\"Yongqi Fu, C. Du, Wei Zhou, L. Lim\",\"doi\":\"10.1155/2008/148505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A type of nanopinhole-based plasmonic structure is presented. It can realize superfocusing within micron-scale propagation distance with spatial resolution beyond diffraction limit. Cut-off wavelength effect is highlighted for understanding how periodicity distribution of the nanopinholes influences transmission and focusing through the structure. Redshift peak transmission occurs while the periodicity increases. In addition, focusing property of the plasmonic structures is analyzed for the monochromatic illumination with different incident wavelengths ranging from 400 nm to 750 nm. The easy fabrication and high focusing performance of the proposed structures may be used in data storage devices, bioimaging, and nanolithography.\",\"PeriodicalId\":341677,\"journal\":{\"name\":\"Research Letters in Physics\",\"volume\":\"39 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Letters in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/148505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Letters in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/148505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A type of nanopinhole-based plasmonic structure is presented. It can realize superfocusing within micron-scale propagation distance with spatial resolution beyond diffraction limit. Cut-off wavelength effect is highlighted for understanding how periodicity distribution of the nanopinholes influences transmission and focusing through the structure. Redshift peak transmission occurs while the periodicity increases. In addition, focusing property of the plasmonic structures is analyzed for the monochromatic illumination with different incident wavelengths ranging from 400 nm to 750 nm. The easy fabrication and high focusing performance of the proposed structures may be used in data storage devices, bioimaging, and nanolithography.