{"title":"具有泊松平衡分布的液滴模型的大偏差分析","authors":"R. Ellis, S. Ta'asan","doi":"10.1155/2015/287450","DOIUrl":null,"url":null,"abstract":"In this paper we use large deviation theory to determine the equilibrium distribution of a basic droplet model that underlies a number of important models in material science and statistical mechanics. Given and , distinguishable particles are placed, each with equal probability , onto the sites of a lattice, where equals . We focus on configurations for which each site is occupied by a minimum of particles. The main result is the large deviation principle (LDP), in the limit and with , for a sequence of random, number-density measures, which are the empirical measures of dependent random variables that count the droplet sizes. The rate function in the LDP is the relative entropy , where is a possible asymptotic configuration of the number-density measures and is a Poisson distribution with mean , restricted to the set of positive integers satisfying . This LDP implies that is the equilibrium distribution of the number-density measures, which in turn implies that is the equilibrium distribution of the random variables that count the droplet sizes.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large Deviation Analysis of a Droplet Model Having a Poisson Equilibrium Distribution\",\"authors\":\"R. Ellis, S. Ta'asan\",\"doi\":\"10.1155/2015/287450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use large deviation theory to determine the equilibrium distribution of a basic droplet model that underlies a number of important models in material science and statistical mechanics. Given and , distinguishable particles are placed, each with equal probability , onto the sites of a lattice, where equals . We focus on configurations for which each site is occupied by a minimum of particles. The main result is the large deviation principle (LDP), in the limit and with , for a sequence of random, number-density measures, which are the empirical measures of dependent random variables that count the droplet sizes. The rate function in the LDP is the relative entropy , where is a possible asymptotic configuration of the number-density measures and is a Poisson distribution with mean , restricted to the set of positive integers satisfying . This LDP implies that is the equilibrium distribution of the number-density measures, which in turn implies that is the equilibrium distribution of the random variables that count the droplet sizes.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/287450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/287450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Deviation Analysis of a Droplet Model Having a Poisson Equilibrium Distribution
In this paper we use large deviation theory to determine the equilibrium distribution of a basic droplet model that underlies a number of important models in material science and statistical mechanics. Given and , distinguishable particles are placed, each with equal probability , onto the sites of a lattice, where equals . We focus on configurations for which each site is occupied by a minimum of particles. The main result is the large deviation principle (LDP), in the limit and with , for a sequence of random, number-density measures, which are the empirical measures of dependent random variables that count the droplet sizes. The rate function in the LDP is the relative entropy , where is a possible asymptotic configuration of the number-density measures and is a Poisson distribution with mean , restricted to the set of positive integers satisfying . This LDP implies that is the equilibrium distribution of the number-density measures, which in turn implies that is the equilibrium distribution of the random variables that count the droplet sizes.