具有泊松平衡分布的液滴模型的大偏差分析

R. Ellis, S. Ta'asan
{"title":"具有泊松平衡分布的液滴模型的大偏差分析","authors":"R. Ellis, S. Ta'asan","doi":"10.1155/2015/287450","DOIUrl":null,"url":null,"abstract":"In this paper we use large deviation theory to determine the equilibrium distribution of a basic droplet model that underlies a number of important models in material science and statistical mechanics. Given and , distinguishable particles are placed, each with equal probability , onto the sites of a lattice, where equals . We focus on configurations for which each site is occupied by a minimum of particles. The main result is the large deviation principle (LDP), in the limit and with , for a sequence of random, number-density measures, which are the empirical measures of dependent random variables that count the droplet sizes. The rate function in the LDP is the relative entropy , where is a possible asymptotic configuration of the number-density measures and is a Poisson distribution with mean , restricted to the set of positive integers satisfying . This LDP implies that is the equilibrium distribution of the number-density measures, which in turn implies that is the equilibrium distribution of the random variables that count the droplet sizes.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large Deviation Analysis of a Droplet Model Having a Poisson Equilibrium Distribution\",\"authors\":\"R. Ellis, S. Ta'asan\",\"doi\":\"10.1155/2015/287450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use large deviation theory to determine the equilibrium distribution of a basic droplet model that underlies a number of important models in material science and statistical mechanics. Given and , distinguishable particles are placed, each with equal probability , onto the sites of a lattice, where equals . We focus on configurations for which each site is occupied by a minimum of particles. The main result is the large deviation principle (LDP), in the limit and with , for a sequence of random, number-density measures, which are the empirical measures of dependent random variables that count the droplet sizes. The rate function in the LDP is the relative entropy , where is a possible asymptotic configuration of the number-density measures and is a Poisson distribution with mean , restricted to the set of positive integers satisfying . This LDP implies that is the equilibrium distribution of the number-density measures, which in turn implies that is the equilibrium distribution of the random variables that count the droplet sizes.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/287450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/287450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们使用大偏差理论来确定基本液滴模型的平衡分布,该模型是材料科学和统计力学中许多重要模型的基础。给定的和可区分的粒子,每一个都有相同的概率,被放置在一个晶格的位置上,在那里等于。我们关注的是每个位点被最小粒子占据的构型。主要结果是大偏差原理(LDP),在极限和与,对于一个随机序列,数密度测量,这是依赖随机变量的经验措施,计数液滴大小。LDP中的速率函数是相对熵,其中是数-密度测度的一个可能的渐近构型,是一个有均值的泊松分布,它被限制在满足的正整数集合中。这个LDP意味着数量-密度测量的平衡分布,这反过来意味着计算液滴大小的随机变量的平衡分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Deviation Analysis of a Droplet Model Having a Poisson Equilibrium Distribution
In this paper we use large deviation theory to determine the equilibrium distribution of a basic droplet model that underlies a number of important models in material science and statistical mechanics. Given and , distinguishable particles are placed, each with equal probability , onto the sites of a lattice, where equals . We focus on configurations for which each site is occupied by a minimum of particles. The main result is the large deviation principle (LDP), in the limit and with , for a sequence of random, number-density measures, which are the empirical measures of dependent random variables that count the droplet sizes. The rate function in the LDP is the relative entropy , where is a possible asymptotic configuration of the number-density measures and is a Poisson distribution with mean , restricted to the set of positive integers satisfying . This LDP implies that is the equilibrium distribution of the number-density measures, which in turn implies that is the equilibrium distribution of the random variables that count the droplet sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信