基于宽带机会阵的水下到达方向估计

Elizaveta Dubrovinskaya, P. Casari
{"title":"基于宽带机会阵的水下到达方向估计","authors":"Elizaveta Dubrovinskaya, P. Casari","doi":"10.1109/OCEANSE.2019.8867262","DOIUrl":null,"url":null,"abstract":"We present a scheme to estimate the direction of arrival of acoustic signals reflected by underwater targets using wideband hydrophone arrays of opportunity. Such arrays may be obtained by arranging together multiple smaller sub-arrays that were originally designed to work independently. The array of opportunity that results may be subject to practical mounting limitations, hence the typical constraint that closest array elements should not be spaced more than one half-wavelength may not be upheld. In these conditions, the array is affected by spatial ambiguity.Our proposed scheme solves this issue by fusing direction-of-arrival information with side information on the estimated target location (obtained via multilateration). This makes it possible to eliminate most of the ambiguity, and yields accurate direction-of-arrival estimates. Our simulation results show that our scheme achieves satisfactory direction of arrival estimation and localization results. Moreover, even by relying on arrays of opportunity, we can outperform classical direction-of-arrival algorithms applied to larger arrays with half-wavelength spacing design.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Underwater Direction of Arrival Estimation using Wideband Arrays of Opportunity\",\"authors\":\"Elizaveta Dubrovinskaya, P. Casari\",\"doi\":\"10.1109/OCEANSE.2019.8867262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a scheme to estimate the direction of arrival of acoustic signals reflected by underwater targets using wideband hydrophone arrays of opportunity. Such arrays may be obtained by arranging together multiple smaller sub-arrays that were originally designed to work independently. The array of opportunity that results may be subject to practical mounting limitations, hence the typical constraint that closest array elements should not be spaced more than one half-wavelength may not be upheld. In these conditions, the array is affected by spatial ambiguity.Our proposed scheme solves this issue by fusing direction-of-arrival information with side information on the estimated target location (obtained via multilateration). This makes it possible to eliminate most of the ambiguity, and yields accurate direction-of-arrival estimates. Our simulation results show that our scheme achieves satisfactory direction of arrival estimation and localization results. Moreover, even by relying on arrays of opportunity, we can outperform classical direction-of-arrival algorithms applied to larger arrays with half-wavelength spacing design.\",\"PeriodicalId\":375793,\"journal\":{\"name\":\"OCEANS 2019 - Marseille\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 - Marseille\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSE.2019.8867262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种利用宽带机会水听器阵列估计水下目标反射声信号到达方向的方案。这种阵列可以通过将最初设计为独立工作的多个较小的子阵列排列在一起而获得。结果可能受到实际安装限制的机会阵列,因此最接近的阵列元素间隔不应超过一个半波长的典型约束可能不成立。在这种情况下,阵列会受到空间模糊的影响。我们提出的方案通过融合到达方向信息和估计目标位置的侧信息(通过多边化获得)来解决这一问题。这使得消除大多数模糊性成为可能,并产生准确的到达方向估计。仿真结果表明,该方案取得了满意的到达方向估计和定位效果。此外,即使依靠机会阵列,我们也可以优于应用于半波长间隔设计的大型阵列的经典到达方向算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater Direction of Arrival Estimation using Wideband Arrays of Opportunity
We present a scheme to estimate the direction of arrival of acoustic signals reflected by underwater targets using wideband hydrophone arrays of opportunity. Such arrays may be obtained by arranging together multiple smaller sub-arrays that were originally designed to work independently. The array of opportunity that results may be subject to practical mounting limitations, hence the typical constraint that closest array elements should not be spaced more than one half-wavelength may not be upheld. In these conditions, the array is affected by spatial ambiguity.Our proposed scheme solves this issue by fusing direction-of-arrival information with side information on the estimated target location (obtained via multilateration). This makes it possible to eliminate most of the ambiguity, and yields accurate direction-of-arrival estimates. Our simulation results show that our scheme achieves satisfactory direction of arrival estimation and localization results. Moreover, even by relying on arrays of opportunity, we can outperform classical direction-of-arrival algorithms applied to larger arrays with half-wavelength spacing design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信