{"title":"基于深度适应网络的商用WiFi手势识别","authors":"Zijun Han, Lingchao Guo, Zhaoming Lu, X. Wen, Wei Zheng","doi":"10.1109/WCNC45663.2020.9120726","DOIUrl":null,"url":null,"abstract":"Device-free gesture recognition plays a crucial role in smart home applications, setting human free from wearable devices and causing no privacy concerns. Prior WiFi-based recognition systems have achieved high accuracy in a static environment, but with limitations in adapting changes in environments and locations. In this paper, we propose a fine-grained deep adaptation networks based gesture recognition scheme (DANGR) using the Channel State Information (CSI). DANGR applies wavelet transformation for amplitude denoising, and conjugate calibration to remove CSI time-variant random phase offsets. A Generative Adversarial Networks (GAN) based data augmentation approach is proposed to reduce the large consumptions of data collection and the over-fitting risks caused by incomplete dataset. The distribution of CSI in various environments may be biased. In order to shrink these domains discrepancies in environments, we adopt domain adaptation based on multikernel Maximum Mean Discrepancy scheme, which matches the mean-embeddings of abstract representations across domains in a reproducing kernel Hilbert space. Extensive empirical evidence shows that DANGR yields mean 94.5% accuracy of gesture recognition confronting environmental variations, providing a promising scheme for practical and long-run implementation.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Deep Adaptation Networks Based Gesture Recognition using Commodity WiFi\",\"authors\":\"Zijun Han, Lingchao Guo, Zhaoming Lu, X. Wen, Wei Zheng\",\"doi\":\"10.1109/WCNC45663.2020.9120726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Device-free gesture recognition plays a crucial role in smart home applications, setting human free from wearable devices and causing no privacy concerns. Prior WiFi-based recognition systems have achieved high accuracy in a static environment, but with limitations in adapting changes in environments and locations. In this paper, we propose a fine-grained deep adaptation networks based gesture recognition scheme (DANGR) using the Channel State Information (CSI). DANGR applies wavelet transformation for amplitude denoising, and conjugate calibration to remove CSI time-variant random phase offsets. A Generative Adversarial Networks (GAN) based data augmentation approach is proposed to reduce the large consumptions of data collection and the over-fitting risks caused by incomplete dataset. The distribution of CSI in various environments may be biased. In order to shrink these domains discrepancies in environments, we adopt domain adaptation based on multikernel Maximum Mean Discrepancy scheme, which matches the mean-embeddings of abstract representations across domains in a reproducing kernel Hilbert space. Extensive empirical evidence shows that DANGR yields mean 94.5% accuracy of gesture recognition confronting environmental variations, providing a promising scheme for practical and long-run implementation.\",\"PeriodicalId\":415064,\"journal\":{\"name\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC45663.2020.9120726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Adaptation Networks Based Gesture Recognition using Commodity WiFi
Device-free gesture recognition plays a crucial role in smart home applications, setting human free from wearable devices and causing no privacy concerns. Prior WiFi-based recognition systems have achieved high accuracy in a static environment, but with limitations in adapting changes in environments and locations. In this paper, we propose a fine-grained deep adaptation networks based gesture recognition scheme (DANGR) using the Channel State Information (CSI). DANGR applies wavelet transformation for amplitude denoising, and conjugate calibration to remove CSI time-variant random phase offsets. A Generative Adversarial Networks (GAN) based data augmentation approach is proposed to reduce the large consumptions of data collection and the over-fitting risks caused by incomplete dataset. The distribution of CSI in various environments may be biased. In order to shrink these domains discrepancies in environments, we adopt domain adaptation based on multikernel Maximum Mean Discrepancy scheme, which matches the mean-embeddings of abstract representations across domains in a reproducing kernel Hilbert space. Extensive empirical evidence shows that DANGR yields mean 94.5% accuracy of gesture recognition confronting environmental variations, providing a promising scheme for practical and long-run implementation.