{"title":"DNA微阵列图像处理算法的软件分析","authors":"Omar Salem Baans, A. B. Jambek","doi":"10.1109/ICSIPA.2017.8120592","DOIUrl":null,"url":null,"abstract":"Microarray analysis is one of the most suitable tools available for scientists concerned with DNA sequences to study and examine gene expression. Through microarray analysis, the gene expression sequence can be obtained and biological information on many diseases can be acquired. The gene expression information contained in the microarray can be extracted using image-processing techniques. Microarray image processing consists of three main steps: gridding, segmentation and intensity extraction. This paper analyses the computational time for this microarray image processing. The results show that the intensity extraction consumes majority of the overall computational time. More detail analysis reveals that this high computational time is due to the background correction part of the process, as discussed in the second part of this paper.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Software profiling analysis for DNA microarray image processing algorithm\",\"authors\":\"Omar Salem Baans, A. B. Jambek\",\"doi\":\"10.1109/ICSIPA.2017.8120592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray analysis is one of the most suitable tools available for scientists concerned with DNA sequences to study and examine gene expression. Through microarray analysis, the gene expression sequence can be obtained and biological information on many diseases can be acquired. The gene expression information contained in the microarray can be extracted using image-processing techniques. Microarray image processing consists of three main steps: gridding, segmentation and intensity extraction. This paper analyses the computational time for this microarray image processing. The results show that the intensity extraction consumes majority of the overall computational time. More detail analysis reveals that this high computational time is due to the background correction part of the process, as discussed in the second part of this paper.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software profiling analysis for DNA microarray image processing algorithm
Microarray analysis is one of the most suitable tools available for scientists concerned with DNA sequences to study and examine gene expression. Through microarray analysis, the gene expression sequence can be obtained and biological information on many diseases can be acquired. The gene expression information contained in the microarray can be extracted using image-processing techniques. Microarray image processing consists of three main steps: gridding, segmentation and intensity extraction. This paper analyses the computational time for this microarray image processing. The results show that the intensity extraction consumes majority of the overall computational time. More detail analysis reveals that this high computational time is due to the background correction part of the process, as discussed in the second part of this paper.