序列蒙特卡罗方法在高阶隐马尔可夫模型中的一些扩展

M. Allaya, A. Coulibaly, E. Dème, Mouhamadou Moustapha Kâ, Babacar Séne
{"title":"序列蒙特卡罗方法在高阶隐马尔可夫模型中的一些扩展","authors":"M. Allaya, A. Coulibaly, E. Dème, Mouhamadou Moustapha Kâ, Babacar Séne","doi":"10.16929/AS/2019.1977.145","DOIUrl":null,"url":null,"abstract":"We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear state space models. Namely, we tailor the SMC  methods to handle high-order HMM through the customary recursions of  posterior distributions. It proceeds on mimicking the two-step procedure that is, the prediction step and the update step, in the derivation of the filter  distribution. Once stated, we extend some smoothing recursions as the  Forward-Backward algorithm and the Backward smoother to deal with the actual smoothing distributions in high-order HMM. Finally, we give few examples as an application of these extensions.Key words: Sequential Monte Carlo, high-order HMM, Smoothing, Filtering","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On some Extensions of the Sequential Monte Carlo methods in high-order Hidden Markov Models\",\"authors\":\"M. Allaya, A. Coulibaly, E. Dème, Mouhamadou Moustapha Kâ, Babacar Séne\",\"doi\":\"10.16929/AS/2019.1977.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear state space models. Namely, we tailor the SMC  methods to handle high-order HMM through the customary recursions of  posterior distributions. It proceeds on mimicking the two-step procedure that is, the prediction step and the update step, in the derivation of the filter  distribution. Once stated, we extend some smoothing recursions as the  Forward-Backward algorithm and the Backward smoother to deal with the actual smoothing distributions in high-order HMM. Finally, we give few examples as an application of these extensions.Key words: Sequential Monte Carlo, high-order HMM, Smoothing, Filtering\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/AS/2019.1977.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/AS/2019.1977.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文分析了序列蒙特卡罗方法在非线性状态空间模型中的一些扩展。也就是说,我们通过后验分布的习惯递归调整SMC方法来处理高阶HMM。它继续模拟两步过程,即预测步骤和更新步骤,在推导滤波器分布。在此基础上,我们将一些平滑递归扩展为前向-后向算法和后向平滑算法来处理高阶HMM中的实际平滑分布。最后,我们给出一些例子作为这些扩展的应用。关键词:顺序蒙特卡罗,高阶HMM,平滑,滤波
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some Extensions of the Sequential Monte Carlo methods in high-order Hidden Markov Models
We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear state space models. Namely, we tailor the SMC  methods to handle high-order HMM through the customary recursions of  posterior distributions. It proceeds on mimicking the two-step procedure that is, the prediction step and the update step, in the derivation of the filter  distribution. Once stated, we extend some smoothing recursions as the  Forward-Backward algorithm and the Backward smoother to deal with the actual smoothing distributions in high-order HMM. Finally, we give few examples as an application of these extensions.Key words: Sequential Monte Carlo, high-order HMM, Smoothing, Filtering
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信