基于全局指针的对话文本信息提取方法

Yanbo J. Wang, Sheng Chen, Hengxing Cai, Wei Wei, Kuo Yan, Zhe Sun, Hui Qin, Yuming Li, Xiaocheng Cai
{"title":"基于全局指针的对话文本信息提取方法","authors":"Yanbo J. Wang, Sheng Chen, Hengxing Cai, Wei Wei, Kuo Yan, Zhe Sun, Hui Qin, Yuming Li, Xiaocheng Cai","doi":"10.18653/v1/2022.seretod-1.2","DOIUrl":null,"url":null,"abstract":"With the widespread popularisation of intelligent technology, task-based dialogue systems (TOD) are increasingly being applied to a wide variety of practical scenarios. As the key tasks in dialogue systems, named entity recognition and slot filling play a crucial role in the completeness and accuracy of information extraction. This paper is an evaluation paper for Sere-TOD 2022 Workshop challenge (Track 1 Information extraction from dialog transcripts). We proposed a multi-model fusion approach based on GlobalPointer, combined with some optimisation tricks, finally achieved an entity F1 of 60.73, an entity-slot-value triple F1 of 56, and an average F1 of 58.37, and got the highest score in SereTOD 2022 Workshop challenge","PeriodicalId":171614,"journal":{"name":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GlobalPointer based Robust Approach for Information Extraction from Dialog Transcripts\",\"authors\":\"Yanbo J. Wang, Sheng Chen, Hengxing Cai, Wei Wei, Kuo Yan, Zhe Sun, Hui Qin, Yuming Li, Xiaocheng Cai\",\"doi\":\"10.18653/v1/2022.seretod-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread popularisation of intelligent technology, task-based dialogue systems (TOD) are increasingly being applied to a wide variety of practical scenarios. As the key tasks in dialogue systems, named entity recognition and slot filling play a crucial role in the completeness and accuracy of information extraction. This paper is an evaluation paper for Sere-TOD 2022 Workshop challenge (Track 1 Information extraction from dialog transcripts). We proposed a multi-model fusion approach based on GlobalPointer, combined with some optimisation tricks, finally achieved an entity F1 of 60.73, an entity-slot-value triple F1 of 56, and an average F1 of 58.37, and got the highest score in SereTOD 2022 Workshop challenge\",\"PeriodicalId\":171614,\"journal\":{\"name\":\"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.seretod-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.seretod-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着智能技术的广泛普及,基于任务的对话系统(TOD)越来越多地应用于各种各样的实际场景。命名实体识别和槽填充作为对话系统的关键任务,对信息抽取的完整性和准确性起着至关重要的作用。本文是Sere-TOD 2022研讨会挑战(Track 1从对话文本中提取信息)的评估论文。我们提出了一种基于GlobalPointer的多模型融合方法,结合一些优化技巧,最终实现了实体F1为60.73,实体-槽-值三重F1为56,平均F1为58.37,并在SereTOD 2022 Workshop挑战赛中获得了最高分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GlobalPointer based Robust Approach for Information Extraction from Dialog Transcripts
With the widespread popularisation of intelligent technology, task-based dialogue systems (TOD) are increasingly being applied to a wide variety of practical scenarios. As the key tasks in dialogue systems, named entity recognition and slot filling play a crucial role in the completeness and accuracy of information extraction. This paper is an evaluation paper for Sere-TOD 2022 Workshop challenge (Track 1 Information extraction from dialog transcripts). We proposed a multi-model fusion approach based on GlobalPointer, combined with some optimisation tricks, finally achieved an entity F1 of 60.73, an entity-slot-value triple F1 of 56, and an average F1 of 58.37, and got the highest score in SereTOD 2022 Workshop challenge
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信