Apache web服务器资源预测的最佳实践指南

G. A. Hoffmann, Kishor S. Trivedi, M. Malek
{"title":"Apache web服务器资源预测的最佳实践指南","authors":"G. A. Hoffmann, Kishor S. Trivedi, M. Malek","doi":"10.1109/PRDC.2006.5","DOIUrl":null,"url":null,"abstract":"Recently, measurement based studies of software systems proliferated, reflecting an increasingly empirical focus on system availability, reliability, aging and fault tolerance. However, it is a non-trivial, error-prone, arduous, and time-consuming task even for experienced system administrators and statistical analysis to know what a reasonable set of steps should include to model and successfully predict performance variables or system failures of a complex software system. Reported results are fragmented and focus on applying statistical regression techniques to captured numerical system data. In this paper, we propose a best practice guide for building empirical models based on our experience with forecasting Apache Web server performance variables and forecasting call availability of a real world telecommunication system. To substantiate the presented guide and to demonstrate our approach step-by-step we model and predict the response time and the amount of free physical memory of an Apache Web server system. Additionally, we present concrete results for a) variable selection where we cross benchmark three procedures, b) empirical model building where we cross benchmark four techniques and c) sensitivity analysis. This best practice guide intends to assist in configuring modeling approaches systematically for best estimation and prediction results","PeriodicalId":314915,"journal":{"name":"2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Best Practice Guide to Resources Forecasting for the Apache Webserver\",\"authors\":\"G. A. Hoffmann, Kishor S. Trivedi, M. Malek\",\"doi\":\"10.1109/PRDC.2006.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, measurement based studies of software systems proliferated, reflecting an increasingly empirical focus on system availability, reliability, aging and fault tolerance. However, it is a non-trivial, error-prone, arduous, and time-consuming task even for experienced system administrators and statistical analysis to know what a reasonable set of steps should include to model and successfully predict performance variables or system failures of a complex software system. Reported results are fragmented and focus on applying statistical regression techniques to captured numerical system data. In this paper, we propose a best practice guide for building empirical models based on our experience with forecasting Apache Web server performance variables and forecasting call availability of a real world telecommunication system. To substantiate the presented guide and to demonstrate our approach step-by-step we model and predict the response time and the amount of free physical memory of an Apache Web server system. Additionally, we present concrete results for a) variable selection where we cross benchmark three procedures, b) empirical model building where we cross benchmark four techniques and c) sensitivity analysis. This best practice guide intends to assist in configuring modeling approaches systematically for best estimation and prediction results\",\"PeriodicalId\":314915,\"journal\":{\"name\":\"2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2006.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2006.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

最近,基于测量的软件系统研究激增,反映了对系统可用性、可靠性、老化和容错性越来越多的经验关注。然而,即使对于经验丰富的系统管理员和统计分析人员来说,要知道建模和成功预测复杂软件系统的性能变量或系统故障应该包括哪些合理的步骤,这也是一项重要的、容易出错的、艰巨的和耗时的任务。报告的结果是碎片化的,重点是应用统计回归技术来捕获数值系统数据。在本文中,我们根据预测Apache Web服务器性能变量和预测真实世界电信系统的调用可用性的经验,提出了构建经验模型的最佳实践指南。为了证实本文所提供的指南并逐步演示我们的方法,我们对Apache Web服务器系统的响应时间和空闲物理内存量进行建模和预测。此外,我们提出了a)变量选择的具体结果,其中我们交叉基准三个程序,b)经验模型的建立,其中我们交叉基准四个技术和c)敏感性分析。本最佳实践指南旨在帮助系统地配置建模方法,以获得最佳估计和预测结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Best Practice Guide to Resources Forecasting for the Apache Webserver
Recently, measurement based studies of software systems proliferated, reflecting an increasingly empirical focus on system availability, reliability, aging and fault tolerance. However, it is a non-trivial, error-prone, arduous, and time-consuming task even for experienced system administrators and statistical analysis to know what a reasonable set of steps should include to model and successfully predict performance variables or system failures of a complex software system. Reported results are fragmented and focus on applying statistical regression techniques to captured numerical system data. In this paper, we propose a best practice guide for building empirical models based on our experience with forecasting Apache Web server performance variables and forecasting call availability of a real world telecommunication system. To substantiate the presented guide and to demonstrate our approach step-by-step we model and predict the response time and the amount of free physical memory of an Apache Web server system. Additionally, we present concrete results for a) variable selection where we cross benchmark three procedures, b) empirical model building where we cross benchmark four techniques and c) sensitivity analysis. This best practice guide intends to assist in configuring modeling approaches systematically for best estimation and prediction results
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信