{"title":"一种基于GaAs HEMT的宽带高效f类功率放大器设计","authors":"Ji Lan, Jianyi Zhou, Zhiqiang Yu, Binqi Yang","doi":"10.1109/IEEE-IWS.2015.7164618","DOIUrl":null,"url":null,"abstract":"This work reveals the design for broadband GaAs Class-F power amplifier employed in terminal applications. The approximated continuous Class-F mode was analyzed and applied to GaAs device. A harmonic matching network was used to realize a broadband fundamental load impedance match while the second and third harmonic impedance are kept inside the high-efficiency region on the edge of the Smith chart. The second harmonic source impedance was also matched to improve the efficiency. The amplifier was fabricated using a 1-W GaAs HEMT device, achieved a power added efficiency above 60% from 1.3-2.1 GHz, with output power greater than 30-31.77 dBm. The maximum power added efficiency and drain efficiency are 75.26% and 81.94% respectively. The amplifier also maintained a high drain efficiency over 50% at 8-dB power back-off point. A comparison shows that this amplifier exceeds other reported GaAs Class-F power amplifiers in terms of bandwidth while high output power and efficiency are maintained.","PeriodicalId":164534,"journal":{"name":"2015 IEEE International Wireless Symposium (IWS 2015)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A broadband high efficiency Class-F power amplifier design using GaAs HEMT\",\"authors\":\"Ji Lan, Jianyi Zhou, Zhiqiang Yu, Binqi Yang\",\"doi\":\"10.1109/IEEE-IWS.2015.7164618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reveals the design for broadband GaAs Class-F power amplifier employed in terminal applications. The approximated continuous Class-F mode was analyzed and applied to GaAs device. A harmonic matching network was used to realize a broadband fundamental load impedance match while the second and third harmonic impedance are kept inside the high-efficiency region on the edge of the Smith chart. The second harmonic source impedance was also matched to improve the efficiency. The amplifier was fabricated using a 1-W GaAs HEMT device, achieved a power added efficiency above 60% from 1.3-2.1 GHz, with output power greater than 30-31.77 dBm. The maximum power added efficiency and drain efficiency are 75.26% and 81.94% respectively. The amplifier also maintained a high drain efficiency over 50% at 8-dB power back-off point. A comparison shows that this amplifier exceeds other reported GaAs Class-F power amplifiers in terms of bandwidth while high output power and efficiency are maintained.\",\"PeriodicalId\":164534,\"journal\":{\"name\":\"2015 IEEE International Wireless Symposium (IWS 2015)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Wireless Symposium (IWS 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEE-IWS.2015.7164618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Wireless Symposium (IWS 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2015.7164618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A broadband high efficiency Class-F power amplifier design using GaAs HEMT
This work reveals the design for broadband GaAs Class-F power amplifier employed in terminal applications. The approximated continuous Class-F mode was analyzed and applied to GaAs device. A harmonic matching network was used to realize a broadband fundamental load impedance match while the second and third harmonic impedance are kept inside the high-efficiency region on the edge of the Smith chart. The second harmonic source impedance was also matched to improve the efficiency. The amplifier was fabricated using a 1-W GaAs HEMT device, achieved a power added efficiency above 60% from 1.3-2.1 GHz, with output power greater than 30-31.77 dBm. The maximum power added efficiency and drain efficiency are 75.26% and 81.94% respectively. The amplifier also maintained a high drain efficiency over 50% at 8-dB power back-off point. A comparison shows that this amplifier exceeds other reported GaAs Class-F power amplifiers in terms of bandwidth while high output power and efficiency are maintained.