机器学习方法在桥梁健康监测中的应用

Jiafan Peng, Shunong Zhang, Dongmu Peng, Kan Liang
{"title":"机器学习方法在桥梁健康监测中的应用","authors":"Jiafan Peng, Shunong Zhang, Dongmu Peng, Kan Liang","doi":"10.1109/ICRSE.2017.8030793","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms have been a typical type of highly efficient method for data processing in these recent decades, and data-driven approaches for bridge health monitoring is particularly useful since a large quantity of sensor data are available. In this paper, a review of most popular applications of machine learning method are presented in order to illustrate their utilities and limitations in the field of bridge health monitoring.","PeriodicalId":317626,"journal":{"name":"2017 Second International Conference on Reliability Systems Engineering (ICRSE)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Application of machine learning method in bridge health monitoring\",\"authors\":\"Jiafan Peng, Shunong Zhang, Dongmu Peng, Kan Liang\",\"doi\":\"10.1109/ICRSE.2017.8030793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms have been a typical type of highly efficient method for data processing in these recent decades, and data-driven approaches for bridge health monitoring is particularly useful since a large quantity of sensor data are available. In this paper, a review of most popular applications of machine learning method are presented in order to illustrate their utilities and limitations in the field of bridge health monitoring.\",\"PeriodicalId\":317626,\"journal\":{\"name\":\"2017 Second International Conference on Reliability Systems Engineering (ICRSE)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Second International Conference on Reliability Systems Engineering (ICRSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRSE.2017.8030793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Reliability Systems Engineering (ICRSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRSE.2017.8030793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近几十年来,机器学习算法一直是一种典型的高效数据处理方法,而数据驱动的方法对于桥梁健康监测特别有用,因为有大量的传感器数据可用。本文综述了机器学习方法在桥梁健康监测领域的应用,阐述了机器学习方法在桥梁健康监测领域的应用和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of machine learning method in bridge health monitoring
Machine learning algorithms have been a typical type of highly efficient method for data processing in these recent decades, and data-driven approaches for bridge health monitoring is particularly useful since a large quantity of sensor data are available. In this paper, a review of most popular applications of machine learning method are presented in order to illustrate their utilities and limitations in the field of bridge health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信