基于胸廓边缘图的肺异常自动筛查

K. Santosh, Szilárd Vajda, Sameer Kiran Antani, G. Thoma
{"title":"基于胸廓边缘图的肺异常自动筛查","authors":"K. Santosh, Szilárd Vajda, Sameer Kiran Antani, G. Thoma","doi":"10.1109/CBMS.2015.50","DOIUrl":null,"url":null,"abstract":"We present a novel method for screening pulmonary abnormalities using thoracic edge map in PA chest radiograph (CXR) images. Our particular interest is to aid clinical officers in screening HIV+ populations in resource constrained regions for Tuberculosis (TB). Our work is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [0, 2π) at different numbers of bins and different pyramid levels. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine, and have achieved a maximum abnormality detection accuracy of 85.92% and area under the ROC curve (AUC) of 0.91 at one second per image, on average, which outperforms the reported state-of-the-art.","PeriodicalId":164356,"journal":{"name":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Pulmonary Abnormality Screening Using Thoracic Edge Map\",\"authors\":\"K. Santosh, Szilárd Vajda, Sameer Kiran Antani, G. Thoma\",\"doi\":\"10.1109/CBMS.2015.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for screening pulmonary abnormalities using thoracic edge map in PA chest radiograph (CXR) images. Our particular interest is to aid clinical officers in screening HIV+ populations in resource constrained regions for Tuberculosis (TB). Our work is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [0, 2π) at different numbers of bins and different pyramid levels. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine, and have achieved a maximum abnormality detection accuracy of 85.92% and area under the ROC curve (AUC) of 0.91 at one second per image, on average, which outperforms the reported state-of-the-art.\",\"PeriodicalId\":164356,\"journal\":{\"name\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2015.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2015.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种新的方法筛选肺部异常使用胸片胸廓边缘图在PA胸片(CXR)图像。我们特别感兴趣的是帮助临床官员在资源有限地区筛查艾滋病毒阳性人群的结核病(TB)。我们的工作动机是观察到异常的cxr往往表现出损坏和/或变形的胸廓边缘图。我们研究了在不同箱数和不同金字塔水平下,在[0,2 π)范围内梯度的所有可能方向的胸边直方图。我们使用了美国国家医学图书馆提供的两个CXR基准集合,并实现了最高异常检测准确率85.92%和ROC曲线下面积(AUC) 0.91,平均每幅图像一秒钟,这优于目前报道的最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Pulmonary Abnormality Screening Using Thoracic Edge Map
We present a novel method for screening pulmonary abnormalities using thoracic edge map in PA chest radiograph (CXR) images. Our particular interest is to aid clinical officers in screening HIV+ populations in resource constrained regions for Tuberculosis (TB). Our work is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [0, 2π) at different numbers of bins and different pyramid levels. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine, and have achieved a maximum abnormality detection accuracy of 85.92% and area under the ROC curve (AUC) of 0.91 at one second per image, on average, which outperforms the reported state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信