K. Santosh, Szilárd Vajda, Sameer Kiran Antani, G. Thoma
{"title":"基于胸廓边缘图的肺异常自动筛查","authors":"K. Santosh, Szilárd Vajda, Sameer Kiran Antani, G. Thoma","doi":"10.1109/CBMS.2015.50","DOIUrl":null,"url":null,"abstract":"We present a novel method for screening pulmonary abnormalities using thoracic edge map in PA chest radiograph (CXR) images. Our particular interest is to aid clinical officers in screening HIV+ populations in resource constrained regions for Tuberculosis (TB). Our work is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [0, 2π) at different numbers of bins and different pyramid levels. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine, and have achieved a maximum abnormality detection accuracy of 85.92% and area under the ROC curve (AUC) of 0.91 at one second per image, on average, which outperforms the reported state-of-the-art.","PeriodicalId":164356,"journal":{"name":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Pulmonary Abnormality Screening Using Thoracic Edge Map\",\"authors\":\"K. Santosh, Szilárd Vajda, Sameer Kiran Antani, G. Thoma\",\"doi\":\"10.1109/CBMS.2015.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for screening pulmonary abnormalities using thoracic edge map in PA chest radiograph (CXR) images. Our particular interest is to aid clinical officers in screening HIV+ populations in resource constrained regions for Tuberculosis (TB). Our work is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [0, 2π) at different numbers of bins and different pyramid levels. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine, and have achieved a maximum abnormality detection accuracy of 85.92% and area under the ROC curve (AUC) of 0.91 at one second per image, on average, which outperforms the reported state-of-the-art.\",\"PeriodicalId\":164356,\"journal\":{\"name\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2015.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2015.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Pulmonary Abnormality Screening Using Thoracic Edge Map
We present a novel method for screening pulmonary abnormalities using thoracic edge map in PA chest radiograph (CXR) images. Our particular interest is to aid clinical officers in screening HIV+ populations in resource constrained regions for Tuberculosis (TB). Our work is motivated by the observation that abnormal CXRs tend to exhibit corrupted and/or deformed thoracic edge maps. We study histograms of thoracic edges for all possible orientations of gradients in the range [0, 2π) at different numbers of bins and different pyramid levels. We have used two CXR benchmark collections made available by the U.S. National Library of Medicine, and have achieved a maximum abnormality detection accuracy of 85.92% and area under the ROC curve (AUC) of 0.91 at one second per image, on average, which outperforms the reported state-of-the-art.