数据栈:异构机器学习数据集接口的统一

Max Lübbering, Maren Pielka, Ilhamcengiz Henk, R. Sifa
{"title":"数据栈:异构机器学习数据集接口的统一","authors":"Max Lübbering, Maren Pielka, Ilhamcengiz Henk, R. Sifa","doi":"10.1109/icdew55742.2022.00014","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) dataset preprocessing, cleaning, and integration into ML pipelines is often a cum-bersome endeavor that is susceptible to bugs and leads to unstructured code from the start. While existing frameworks for dataset integration often come with an extensive dataset repository, extending these repositories to new datasets is nontrivial due to lack of dataset retrieval, processing and iterator separation. To simplify the process of dataset integration, we present Datastack, an open-source framework that minimizes these efforts by providing well-defined interfaces that seamlessly integrate into existing machine learning frameworks. Inspired by stream processing frameworks such as Flink or Storm, Datastack decouples dataset-specific peculiarities such as custom data formats from the framework by introducing byte streams on an interface level. Furthermore, Datastack delivers dataset preprocessing functionalities such as stacking, splitting, and merging to alleviate error-prone data processing pipelines.","PeriodicalId":429378,"journal":{"name":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Datastack: Unification of Heterogeneous Machine Learning Dataset Interfaces\",\"authors\":\"Max Lübbering, Maren Pielka, Ilhamcengiz Henk, R. Sifa\",\"doi\":\"10.1109/icdew55742.2022.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) dataset preprocessing, cleaning, and integration into ML pipelines is often a cum-bersome endeavor that is susceptible to bugs and leads to unstructured code from the start. While existing frameworks for dataset integration often come with an extensive dataset repository, extending these repositories to new datasets is nontrivial due to lack of dataset retrieval, processing and iterator separation. To simplify the process of dataset integration, we present Datastack, an open-source framework that minimizes these efforts by providing well-defined interfaces that seamlessly integrate into existing machine learning frameworks. Inspired by stream processing frameworks such as Flink or Storm, Datastack decouples dataset-specific peculiarities such as custom data formats from the framework by introducing byte streams on an interface level. Furthermore, Datastack delivers dataset preprocessing functionalities such as stacking, splitting, and merging to alleviate error-prone data processing pipelines.\",\"PeriodicalId\":429378,\"journal\":{\"name\":\"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icdew55742.2022.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdew55742.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习(ML)数据集的预处理、清理和集成到ML管道中通常是一项繁琐的工作,容易出现错误,并从一开始就导致非结构化代码。虽然现有的数据集集成框架通常带有广泛的数据集存储库,但由于缺乏数据集检索、处理和迭代器分离,将这些存储库扩展到新数据集并非易事。为了简化数据集集成的过程,我们提出了Datastack,这是一个开源框架,通过提供无缝集成到现有机器学习框架中的定义良好的接口,最大限度地减少了这些努力。受Flink或Storm等流处理框架的启发,Datastack通过在接口级别引入字节流,将特定于数据集的特性(如自定义数据格式)与框架解耦。此外,Datastack还提供数据集预处理功能,如堆叠、拆分和合并,以减轻容易出错的数据处理管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Datastack: Unification of Heterogeneous Machine Learning Dataset Interfaces
Machine learning (ML) dataset preprocessing, cleaning, and integration into ML pipelines is often a cum-bersome endeavor that is susceptible to bugs and leads to unstructured code from the start. While existing frameworks for dataset integration often come with an extensive dataset repository, extending these repositories to new datasets is nontrivial due to lack of dataset retrieval, processing and iterator separation. To simplify the process of dataset integration, we present Datastack, an open-source framework that minimizes these efforts by providing well-defined interfaces that seamlessly integrate into existing machine learning frameworks. Inspired by stream processing frameworks such as Flink or Storm, Datastack decouples dataset-specific peculiarities such as custom data formats from the framework by introducing byte streams on an interface level. Furthermore, Datastack delivers dataset preprocessing functionalities such as stacking, splitting, and merging to alleviate error-prone data processing pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信