分布时滞反馈Genesio系统的稳定性与Hopf分岔分析

J. Guan, F. Chen
{"title":"分布时滞反馈Genesio系统的稳定性与Hopf分岔分析","authors":"J. Guan, F. Chen","doi":"10.1109/IWCFTA.2012.19","DOIUrl":null,"url":null,"abstract":"In this paper, the Genesio system with distributed time delay feedback is studied. Its linear stability is investigated based on the Routh-Hurwitz criteria. After the local asymptotic stability is analyzed, Hopf bifurcation is demonstrated by choosing the mean time delay as a bifurcation parameter. The direction and the stability criteria of the bifurcating periodic solutions are determined by applying the normal form theory and the center manifold theorem. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical results.","PeriodicalId":354870,"journal":{"name":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Hopf Bifurcation Analysis of Genesio System with Distributed Delays Feedback\",\"authors\":\"J. Guan, F. Chen\",\"doi\":\"10.1109/IWCFTA.2012.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Genesio system with distributed time delay feedback is studied. Its linear stability is investigated based on the Routh-Hurwitz criteria. After the local asymptotic stability is analyzed, Hopf bifurcation is demonstrated by choosing the mean time delay as a bifurcation parameter. The direction and the stability criteria of the bifurcating periodic solutions are determined by applying the normal form theory and the center manifold theorem. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical results.\",\"PeriodicalId\":354870,\"journal\":{\"name\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2012.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2012.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有分布时滞反馈的Genesio系统。基于Routh-Hurwitz准则研究了它的线性稳定性。在分析了系统的局部渐近稳定性后,选择平均时滞作为分岔参数,证明了Hopf分岔。应用范式理论和中心流形定理确定了分岔周期解的方向和稳定性判据。最后,通过数值模拟验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and Hopf Bifurcation Analysis of Genesio System with Distributed Delays Feedback
In this paper, the Genesio system with distributed time delay feedback is studied. Its linear stability is investigated based on the Routh-Hurwitz criteria. After the local asymptotic stability is analyzed, Hopf bifurcation is demonstrated by choosing the mean time delay as a bifurcation parameter. The direction and the stability criteria of the bifurcating periodic solutions are determined by applying the normal form theory and the center manifold theorem. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信