深度稳健回归

Tzvi Diskin, Gordana Drašković, F. Pascal, A. Wiesel
{"title":"深度稳健回归","authors":"Tzvi Diskin, Gordana Drašković, F. Pascal, A. Wiesel","doi":"10.1109/CAMSAP.2017.8313200","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the use of deep neural networks in the context of robust regression. We address the standard linear model with observations that are corrupted by outliers. We build upon Huber's robust regression and the classical least trimmed squares estimator, and propose a deep neural network that generalizes both and provides high accuracy with low computational complexity. The network is trained for arbitrary linear models using a single training phase. Numerical experiments with synthetic data demonstrate that the network can handle on a large range of Signal-to-Noise Ratio (SNR) and is robust to different types of outliers.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep robust regression\",\"authors\":\"Tzvi Diskin, Gordana Drašković, F. Pascal, A. Wiesel\",\"doi\":\"10.1109/CAMSAP.2017.8313200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the use of deep neural networks in the context of robust regression. We address the standard linear model with observations that are corrupted by outliers. We build upon Huber's robust regression and the classical least trimmed squares estimator, and propose a deep neural network that generalizes both and provides high accuracy with low computational complexity. The network is trained for arbitrary linear models using a single training phase. Numerical experiments with synthetic data demonstrate that the network can handle on a large range of Signal-to-Noise Ratio (SNR) and is robust to different types of outliers.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们考虑在鲁棒回归的背景下使用深度神经网络。我们用被异常值破坏的观测值来处理标准线性模型。我们在Huber的稳健回归和经典的最小裁剪二乘估计器的基础上,提出了一种深度神经网络,它可以推广两者,并提供高精度和低计算复杂度。使用单个训练阶段对网络进行任意线性模型的训练。用合成数据进行的数值实验表明,该网络可以处理大范围的信噪比,对不同类型的异常值具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep robust regression
In this paper, we consider the use of deep neural networks in the context of robust regression. We address the standard linear model with observations that are corrupted by outliers. We build upon Huber's robust regression and the classical least trimmed squares estimator, and propose a deep neural network that generalizes both and provides high accuracy with low computational complexity. The network is trained for arbitrary linear models using a single training phase. Numerical experiments with synthetic data demonstrate that the network can handle on a large range of Signal-to-Noise Ratio (SNR) and is robust to different types of outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信