{"title":"一种新的混合粒子群优化算法的仿真","authors":"M.M. Noel, T. Jannett","doi":"10.1109/SSST.2004.1295638","DOIUrl":null,"url":null,"abstract":"In this paper a new hybrid particle swarm optimization (PSO) algorithm is introduced which makes use of gradient information to achieve faster convergence without getting trapped in local minima. Simulation results comparing the standard PSO algorithm to the new hybrid PSO algorithm are presented. The De Jong test suite of optimization problems is used to test the performance of all algorithms. Performance measures to compare the performance of different algorithms are discussed. The new hybrid PSO algorithm is shown to converge faster for a certain class of optimization problems.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Simulation of a new hybrid particle swarm optimization algorithm\",\"authors\":\"M.M. Noel, T. Jannett\",\"doi\":\"10.1109/SSST.2004.1295638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new hybrid particle swarm optimization (PSO) algorithm is introduced which makes use of gradient information to achieve faster convergence without getting trapped in local minima. Simulation results comparing the standard PSO algorithm to the new hybrid PSO algorithm are presented. The De Jong test suite of optimization problems is used to test the performance of all algorithms. Performance measures to compare the performance of different algorithms are discussed. The new hybrid PSO algorithm is shown to converge faster for a certain class of optimization problems.\",\"PeriodicalId\":309617,\"journal\":{\"name\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2004.1295638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of a new hybrid particle swarm optimization algorithm
In this paper a new hybrid particle swarm optimization (PSO) algorithm is introduced which makes use of gradient information to achieve faster convergence without getting trapped in local minima. Simulation results comparing the standard PSO algorithm to the new hybrid PSO algorithm are presented. The De Jong test suite of optimization problems is used to test the performance of all algorithms. Performance measures to compare the performance of different algorithms are discussed. The new hybrid PSO algorithm is shown to converge faster for a certain class of optimization problems.