基于使用湍流的预先信息的稳健性模型预测控制的Gust Alleviation控制

昌之 佐藤, 信宏 横山, 淳二 佐藤
{"title":"基于使用湍流的预先信息的稳健性模型预测控制的Gust Alleviation控制","authors":"昌之 佐藤, 信宏 横山, 淳二 佐藤","doi":"10.2322/JJSASS.57.345","DOIUrl":null,"url":null,"abstract":"This paper addresses the design problem of Gust Alleviation (GA) flight controllers for linearized longitudinal aircraft motions with some uncertainties using prior turbulence information via Model Predictive Control (MPC) scheme. Considering that the plant uncertainties are assumed to be modeled as time-invariant uncertain but bounded delays at the plant control input, we derive a plant set, the number of whose elements are finite, to represent the uncertainties without introducing any approximations. For this set, we derive a new formulation to obtain an optimal control input, which guarantees some robust performance with respect to GA performance against the delays, as a Second-Order Cone Programming (SOCP) problem. As the conditions in SOCP problems have the convexity with respect to the decision variables, the global optimal control input for our addressed problem is obtained using some effective software. Exploiting that our proposed method introduces no approximations when deriving the plant set and SOCP problems can give the global optima, we propose a method to identify whether or not the prior gust information improves GA performance. A numerical example which illustrates our conclusions is included.","PeriodicalId":144591,"journal":{"name":"Journal of The Japan Society for Aeronautical and Space Sciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"乱気流の事前情報を用いたロバストモデル予測制御による Gust Alleviation 制御\",\"authors\":\"昌之 佐藤, 信宏 横山, 淳二 佐藤\",\"doi\":\"10.2322/JJSASS.57.345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the design problem of Gust Alleviation (GA) flight controllers for linearized longitudinal aircraft motions with some uncertainties using prior turbulence information via Model Predictive Control (MPC) scheme. Considering that the plant uncertainties are assumed to be modeled as time-invariant uncertain but bounded delays at the plant control input, we derive a plant set, the number of whose elements are finite, to represent the uncertainties without introducing any approximations. For this set, we derive a new formulation to obtain an optimal control input, which guarantees some robust performance with respect to GA performance against the delays, as a Second-Order Cone Programming (SOCP) problem. As the conditions in SOCP problems have the convexity with respect to the decision variables, the global optimal control input for our addressed problem is obtained using some effective software. Exploiting that our proposed method introduces no approximations when deriving the plant set and SOCP problems can give the global optima, we propose a method to identify whether or not the prior gust information improves GA performance. A numerical example which illustrates our conclusions is included.\",\"PeriodicalId\":144591,\"journal\":{\"name\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/JJSASS.57.345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/JJSASS.57.345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用模型预测控制(MPC)方法,研究了具有一定不确定性的线性化飞机纵向运动的阵风缓和(GA)飞行控制器设计问题。考虑到植物不确定性被假设为在植物控制输入处的时不变不确定但有界延迟,我们推导了一个元素数量有限的植物集来表示不确定性,而不引入任何近似。对于这个集合,我们导出了一个新的公式来获得一个最优控制输入,它保证了相对于遗传算法对延迟的鲁棒性,作为一个二阶锥规划(SOCP)问题。由于SOCP问题的条件相对于决策变量具有凸性,利用一些有效的软件得到了问题的全局最优控制输入。利用我们提出的方法在推导植物集时不引入近似,并且SOCP问题可以给出全局最优,我们提出了一种方法来识别先验阵风信息是否提高遗传算法性能。最后给出了一个数值例子来说明我们的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
乱気流の事前情報を用いたロバストモデル予測制御による Gust Alleviation 制御
This paper addresses the design problem of Gust Alleviation (GA) flight controllers for linearized longitudinal aircraft motions with some uncertainties using prior turbulence information via Model Predictive Control (MPC) scheme. Considering that the plant uncertainties are assumed to be modeled as time-invariant uncertain but bounded delays at the plant control input, we derive a plant set, the number of whose elements are finite, to represent the uncertainties without introducing any approximations. For this set, we derive a new formulation to obtain an optimal control input, which guarantees some robust performance with respect to GA performance against the delays, as a Second-Order Cone Programming (SOCP) problem. As the conditions in SOCP problems have the convexity with respect to the decision variables, the global optimal control input for our addressed problem is obtained using some effective software. Exploiting that our proposed method introduces no approximations when deriving the plant set and SOCP problems can give the global optima, we propose a method to identify whether or not the prior gust information improves GA performance. A numerical example which illustrates our conclusions is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信