知识图谱指导的多元金融时间序列同步预测与网络学习

Shibal Ibrahim, Wenyu Chen, Yada Zhu, Ping Chen, Yang Zhang, R. Mazumder
{"title":"知识图谱指导的多元金融时间序列同步预测与网络学习","authors":"Shibal Ibrahim, Wenyu Chen, Yada Zhu, Ping Chen, Yang Zhang, R. Mazumder","doi":"10.1145/3533271.3561702","DOIUrl":null,"url":null,"abstract":"Financial time series forecasting is challenging due to limited sample size, correlated samples, low signal strengths, among others. Additional information with knowledge graphs (KGs) can allow for improved prediction and decision making. In this work, we explore a framework GregNets for jointly learning forecasting models and correlations structures that exploit graph connectivity from KGs. We propose novel regularizers based on KG relations to guide estimation of correlation structure. We develop a pseudo-likelihood layer that can learn the error residual structure for any multivariate time-series forecasting architecture in deep learning APIs (e.g. Tensorflow). We evaluate our modeling and algorithmic proposals in small sample regimes in real-world financial markets with two types of KGs. Our empirical results demonstrate sparser connectivity structures, runtime improvements and high-quality predictions.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Knowledge Graph Guided Simultaneous Forecasting and Network Learning for Multivariate Financial Time Series\",\"authors\":\"Shibal Ibrahim, Wenyu Chen, Yada Zhu, Ping Chen, Yang Zhang, R. Mazumder\",\"doi\":\"10.1145/3533271.3561702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial time series forecasting is challenging due to limited sample size, correlated samples, low signal strengths, among others. Additional information with knowledge graphs (KGs) can allow for improved prediction and decision making. In this work, we explore a framework GregNets for jointly learning forecasting models and correlations structures that exploit graph connectivity from KGs. We propose novel regularizers based on KG relations to guide estimation of correlation structure. We develop a pseudo-likelihood layer that can learn the error residual structure for any multivariate time-series forecasting architecture in deep learning APIs (e.g. Tensorflow). We evaluate our modeling and algorithmic proposals in small sample regimes in real-world financial markets with two types of KGs. Our empirical results demonstrate sparser connectivity structures, runtime improvements and high-quality predictions.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于样本量有限、样本相关、信号强度低等原因,金融时间序列预测具有挑战性。知识图(KGs)的附加信息可以改进预测和决策。在这项工作中,我们探索了一个框架GregNets,用于联合学习预测模型和利用KG图连通性的关联结构,我们提出了基于KG关系的新正则器来指导关联结构的估计。我们开发了一个伪似然层,可以学习深度学习api(例如Tensorflow)中任何多元时间序列预测架构的误差残差结构。我们用两种类型的KGs在现实金融市场的小样本制度中评估了我们的建模和算法建议。我们的实证结果显示了更稀疏的连接结构、运行时间的改进和高质量的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Graph Guided Simultaneous Forecasting and Network Learning for Multivariate Financial Time Series
Financial time series forecasting is challenging due to limited sample size, correlated samples, low signal strengths, among others. Additional information with knowledge graphs (KGs) can allow for improved prediction and decision making. In this work, we explore a framework GregNets for jointly learning forecasting models and correlations structures that exploit graph connectivity from KGs. We propose novel regularizers based on KG relations to guide estimation of correlation structure. We develop a pseudo-likelihood layer that can learn the error residual structure for any multivariate time-series forecasting architecture in deep learning APIs (e.g. Tensorflow). We evaluate our modeling and algorithmic proposals in small sample regimes in real-world financial markets with two types of KGs. Our empirical results demonstrate sparser connectivity structures, runtime improvements and high-quality predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信