{"title":"利用乘法器的分布式近交变方向法进行智能电网监测","authors":"Raffaele Carli, M. Dotoli","doi":"10.1109/COASE.2017.8256140","DOIUrl":null,"url":null,"abstract":"Efficient and effective monitoring represents the starting point for a reliable and secure smart grid. Given the increasing size and complexity of power networks and the pressing concerns on privacy and robustness, the development of intelligent and flexible distributed monitoring systems represents a crucial issue in both structuring and operating future grids. In this context, this paper presents a distributed optimization framework for use in smart grid monitoring. We propose a distributed algorithm based on ADMM (Alternating Direction Method of Multipliers) for use in large scale optimization problems in smart grid monitoring. The proposed solution is based upon a local-based optimization process, where a limited amount of information is exchanged only between neighboring nodes in a locally broadcast fashion. Applying the approach to two illustrating examples demonstrates it allows exploiting the scalability and efficiency of distributed ADMM for distributed smart grid monitoring.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using the distributed proximal alternating direction method of multipliers for smart grid monitoring\",\"authors\":\"Raffaele Carli, M. Dotoli\",\"doi\":\"10.1109/COASE.2017.8256140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and effective monitoring represents the starting point for a reliable and secure smart grid. Given the increasing size and complexity of power networks and the pressing concerns on privacy and robustness, the development of intelligent and flexible distributed monitoring systems represents a crucial issue in both structuring and operating future grids. In this context, this paper presents a distributed optimization framework for use in smart grid monitoring. We propose a distributed algorithm based on ADMM (Alternating Direction Method of Multipliers) for use in large scale optimization problems in smart grid monitoring. The proposed solution is based upon a local-based optimization process, where a limited amount of information is exchanged only between neighboring nodes in a locally broadcast fashion. Applying the approach to two illustrating examples demonstrates it allows exploiting the scalability and efficiency of distributed ADMM for distributed smart grid monitoring.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using the distributed proximal alternating direction method of multipliers for smart grid monitoring
Efficient and effective monitoring represents the starting point for a reliable and secure smart grid. Given the increasing size and complexity of power networks and the pressing concerns on privacy and robustness, the development of intelligent and flexible distributed monitoring systems represents a crucial issue in both structuring and operating future grids. In this context, this paper presents a distributed optimization framework for use in smart grid monitoring. We propose a distributed algorithm based on ADMM (Alternating Direction Method of Multipliers) for use in large scale optimization problems in smart grid monitoring. The proposed solution is based upon a local-based optimization process, where a limited amount of information is exchanged only between neighboring nodes in a locally broadcast fashion. Applying the approach to two illustrating examples demonstrates it allows exploiting the scalability and efficiency of distributed ADMM for distributed smart grid monitoring.