基于重排Freeman链码的图像检索技术

Jongan Park, Khaled Mohammad Mohiuddin Chisty, Jimin Lee, Youngeun An, Youngil Choi
{"title":"基于重排Freeman链码的图像检索技术","authors":"Jongan Park, Khaled Mohammad Mohiuddin Chisty, Jimin Lee, Youngeun An, Youngil Choi","doi":"10.1109/ICI.2011.54","DOIUrl":null,"url":null,"abstract":"An Image retrieval method based on the statistical representation of the freeman chain code is proposed. Freeman chain code is used for representing the contour of an image object. We do the feature extraction by smoothing the object for noise reduction, convert to binary image by thresholding, then the boundary of the object is detected and the first difference of the chain code is computed instead of the chain code itself. The histogram count of the chain code is computed and we rearrange the histogram count in ascending order. After computing the rearrange histogram count we compute the mean and variance of the rearrange chain code. Based on these feature we retrieved image from the database. We used the database that contains approximately one thousand images. The proposed method usually shows better results.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Image Retrieval Technique Using Rearranged Freeman Chain Code\",\"authors\":\"Jongan Park, Khaled Mohammad Mohiuddin Chisty, Jimin Lee, Youngeun An, Youngil Choi\",\"doi\":\"10.1109/ICI.2011.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Image retrieval method based on the statistical representation of the freeman chain code is proposed. Freeman chain code is used for representing the contour of an image object. We do the feature extraction by smoothing the object for noise reduction, convert to binary image by thresholding, then the boundary of the object is detected and the first difference of the chain code is computed instead of the chain code itself. The histogram count of the chain code is computed and we rearrange the histogram count in ascending order. After computing the rearrange histogram count we compute the mean and variance of the rearrange chain code. Based on these feature we retrieved image from the database. We used the database that contains approximately one thousand images. The proposed method usually shows better results.\",\"PeriodicalId\":146712,\"journal\":{\"name\":\"2011 First International Conference on Informatics and Computational Intelligence\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 First International Conference on Informatics and Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICI.2011.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于freeman链码统计表示的图像检索方法。弗里曼链码用于表示图像对象的轮廓。我们通过对目标进行平滑降噪来进行特征提取,通过阈值分割转换为二值图像,然后检测目标的边界并计算链码的一阶差分,而不是计算链码本身。计算链码的直方图计数,并将直方图计数按升序重新排列。计算重排直方图计数后,计算重排链码的均值和方差。根据这些特征从数据库中检索图像。我们使用了包含大约1000张图像的数据库。所提出的方法通常具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Retrieval Technique Using Rearranged Freeman Chain Code
An Image retrieval method based on the statistical representation of the freeman chain code is proposed. Freeman chain code is used for representing the contour of an image object. We do the feature extraction by smoothing the object for noise reduction, convert to binary image by thresholding, then the boundary of the object is detected and the first difference of the chain code is computed instead of the chain code itself. The histogram count of the chain code is computed and we rearrange the histogram count in ascending order. After computing the rearrange histogram count we compute the mean and variance of the rearrange chain code. Based on these feature we retrieved image from the database. We used the database that contains approximately one thousand images. The proposed method usually shows better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信