{"title":"变形网格变压器三维人体网格恢复","authors":"Y. Yoshiyasu","doi":"10.1109/CVPR52729.2023.01631","DOIUrl":null,"url":null,"abstract":"We present Deformable mesh transFormer (DeFormer), a novel vertex-based approach to monocular 3D human mesh recovery. DeFormer iteratively fits a body mesh model to an input image via a mesh alignment feedback loop formed within a transformer decoder that is equipped with efficient body mesh driven attention modules: 1) body sparse self-attention and 2) deformable mesh cross attention. As a result, DeFormer can effectively exploit high-resolution image feature maps and a dense mesh model which were computationally expensive to deal with in previous approaches using the standard transformer attention. Experimental results show that DeFormer achieves state-of-the-art performances on the Human3.6M and 3DPW benchmarks. Ablation study is also conducted to show the effectiveness of the DeFormer model designs for leveraging multi-scale feature maps. Code is available at https://github.com/yusukey03012/DeFormer.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"108 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deformable Mesh Transformer for 3D Human Mesh Recovery\",\"authors\":\"Y. Yoshiyasu\",\"doi\":\"10.1109/CVPR52729.2023.01631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Deformable mesh transFormer (DeFormer), a novel vertex-based approach to monocular 3D human mesh recovery. DeFormer iteratively fits a body mesh model to an input image via a mesh alignment feedback loop formed within a transformer decoder that is equipped with efficient body mesh driven attention modules: 1) body sparse self-attention and 2) deformable mesh cross attention. As a result, DeFormer can effectively exploit high-resolution image feature maps and a dense mesh model which were computationally expensive to deal with in previous approaches using the standard transformer attention. Experimental results show that DeFormer achieves state-of-the-art performances on the Human3.6M and 3DPW benchmarks. Ablation study is also conducted to show the effectiveness of the DeFormer model designs for leveraging multi-scale feature maps. Code is available at https://github.com/yusukey03012/DeFormer.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"108 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.01631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformable Mesh Transformer for 3D Human Mesh Recovery
We present Deformable mesh transFormer (DeFormer), a novel vertex-based approach to monocular 3D human mesh recovery. DeFormer iteratively fits a body mesh model to an input image via a mesh alignment feedback loop formed within a transformer decoder that is equipped with efficient body mesh driven attention modules: 1) body sparse self-attention and 2) deformable mesh cross attention. As a result, DeFormer can effectively exploit high-resolution image feature maps and a dense mesh model which were computationally expensive to deal with in previous approaches using the standard transformer attention. Experimental results show that DeFormer achieves state-of-the-art performances on the Human3.6M and 3DPW benchmarks. Ablation study is also conducted to show the effectiveness of the DeFormer model designs for leveraging multi-scale feature maps. Code is available at https://github.com/yusukey03012/DeFormer.